• Title/Summary/Keyword: Natural Vibration Mode

Search Result 1,098, Processing Time 0.025 seconds

Study on the In-Plane Vibration Characteristics of the Pneumatic Tires (공기압(空氣壓)타이어의 평면진동특성(平面振動特性)에 관(關)한 연구(硏究))

  • Kim, Nam Joen;Lee, Chong-Ho
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.9-15
    • /
    • 1987
  • The vibrational characteristics of a radial-ply (155SR13 4PR) and a biased-ply tire (6.15-134PR) were investigated for examining the effects of tires with different structure on the ride characteristics of the vehicle. The natural frequencies at the tread band, mode shapes, and damping factors of two tires at the state of plane vibration were determined experimentally. The test work was performed at four levels of the inflation pressure, ranging from 171.7 kPa to 245.2 kPa, and three levels of the vertical load, deviating by 10% from the standard load designated by the Department of Transportation of the United States of America. The following results were drawn by the analysis of the test results: 1. The first-order natural frequencies of the radial-ply and the biased-ply tires at the tread band were 112 Hz and 159 Hz, respectively, at the state o f the free vibration when the inflation pressure of 196.2 kPa was applied. It was known that the biased-ply tire has higher resonant frequency than the radial-ply tire and the natural frequencies of the both tires move to the high frequency range as t he inflation pressure is increased. 2. The vibration modes of both tires were quite different. No big difference in mode shapes was examined as the inflation pressure was increased. But the natural frequencies of two tires were changed. For the radial-ply tire, no difference in mode shape was found whether the vertical load was applied or not. But a significant difference in mode shape was examined for the biased-ply tire. 3. Any difference was not found in damping factor as the different inflation pressures were applied. 4. When no vertical load was applied, damping factors of the radial-ply and biased-ply tire at the state of the natural vibration ranged from 2.6 to 5.9%, and from 4.1 to 7.8%, respectively. It was estimated that the radial-ply tire would have better cushioning than the biased-ply tire since the vertical spring rate of the radial-ply tire was much less than that of the biased-ply tire, even though the damping effect of the radial-ply tire was smaller than that of the biased-ply tire.

  • PDF

Vibration Characteristics of the Point-symmetric Mode in a Spherical Piezoelectric Transducer (구형 압전 변환기의 점대칭 방사모드 진동 특성)

  • 전한용;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.757-765
    • /
    • 2002
  • The object of this paper is to examine the vibration characteristics of the point-symmetric radial mode in a spherical piezoelectric transducer. The differential equations of piezoelectric radial motion are derived in terms of the radial displacement and electric potential, which are functions of the radial coordinate and time. Applying mechanical and electrical boundary conditions yields the characteristic equation of radial vibration. Numerical results of the natural frequencies are compared with the experimental measurements. The paper discusses the difference between piezoelectric and elastic resonances and the dependence of the natural frequencies on the radius and thickness of the piezoelectric spheres. As a result it is concluded for the first radial mode that the natural frequency is reduced due to the piezoelectric phenomenon and that the frequency exponentially decreases as the sphere radius increases.

Dynamic Modeling of the Stator Core of the Electrical Machine Using Orthotroic Characteristics (이방성을 고려한 회전기기 고정자 코어의 동적 모델링)

  • Kim, Heui-Won;Lee, Soo-Mok;Kim, Kwan-Young;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1044-1048
    • /
    • 2002
  • The experimental modal testing has been carried out for the stator of a generator to confirm the vibrational mode shapes and the corresponding natural frequencies. The model of the stator for the vibration analysis was developed and a series of vibration analyses was carried out. And the properties of the solid element were updated to reduce the differences of the natural frequencies between the measured and the analysed. In the vibration anlyses, the axial, radial and circumferential properties of the solid element were separately varied to take into account the orthotropic effect of the laminated structure and to match the primary modes of the stator core which were extracted from the modal testing. After several attempts to match the measured natural frequencies and model shapes, the properties of the stator model were determined. Comparison of the vibration analyses results based on the determined properties showed fairly good coincidence with the measured data.

  • PDF

Damped frequencies of precast modular steel-concrete composite railway track slabs

  • Kaewunruen, Sakdirat;Kimani, Stephen Kimindiri
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.427-442
    • /
    • 2017
  • This paper presents unprecedented damped oscillation behaviours of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an innovative slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both undamped and damped eigenfrequencies and eigenmodes have been extracted using the Lancsoz method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향)

  • 윤한익;손인수;진종태;김현수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.

Vibration Characteristic of a Cylindrical Rod according to the Mounting Locations on the Grid Support Structure (격자 지지구조체에 묶여있는 실린더 형 봉의 삽입위치에 따른 진동특성)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Jae-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.515-518
    • /
    • 2006
  • A vibration test for a cylindrical rod inserted on the grid support structure was tested using the sine sweep excitation method with closed loop force control. The effect of the mounting location of a test rod on the vibration characteristics of a rod continuously supported by the full size($16{\times}16$) grid support was identified. An electromagnetic vibration shaker, non-contact displacement sensor and HP/VXI data acquisition device were used and TDAS software was also used as a data sampling and processing tools. The natural frequencies and mode shape of the test rod were consistent with the previous works of a rod vibration test with partial grids($3{\times}3,\;5{\times}5\;and\;7{\times}7$). The frequency characteristics of the rod according to the mounting location were shown clear discrepancies, but mode shapes were nearly same. As the test rod closes to the bottom clamping region of the spacer grid, peak vibration amplitudes of the rod become smaller.

  • PDF

A Study of Natural Frequency on Offshore Wind Turbine Structural Change (해상 풍력 발전용 구조물 변화에 따른 고유진동해석)

  • Lee, Kang-Su;Lee, Jung-Tak;Son, Choong-Yul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1016
    • /
    • 2007
  • The purpose of this paper is to investigate the Natural Frequency behavior characteristic of Wind Turbine Tower model, and calculated the stress values of thrust load, wave load, wind load, current load, and gravity load. The offshore Jacket Type Tower which was installed in Vitenam South China Sea is used for the study. Natural frequency and mode shape are calculated with commercial program using the measured vibration. The finite element analysis is performed with commercial F.E.M program(ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

Vibration Characteristics of Liquid Column Vibration Absorber with Various Area Ratio (다양한 수평 수직 단면적비를 가지는 LCVA의 진동특성 평가)

  • Chung, Lan;Lee, Joung-Woo;Park, Hyun-Chin;Lee, Sang-Hyun;Woo, Sung-Sik;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.121-125
    • /
    • 2007
  • LCVA has an advantage that its natural frequency can be easily controlled by changing the area ratio of the vertical column and horizontal part. The previous studies investigated the dynamic characteristics of the LCVA under harmonic load. This study experimentally obtained the first and second mode natural frequencies of the LCVA from shaking table tests using white noise and compared the values with the ones by previous study. Test results show that the measured first mode natural frequency of the LCVA is larger than the calculated one when the area ratio is larger than 1. The second mode frequency increases with the increasing area ratio, which is due to the sloshing motion effect resulting from the large area of the vertical column.

  • PDF

Mode Shape of Timoshenko Beam Having Different Circular Cross-Sections (다단 티모센코 원형단면봉의 연속 고유모우드)

  • 전오성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.118-123
    • /
    • 1997
  • The study suggests a method to analyze the vibration of the multi-stepped beam having the different circular cross-sections. The rotatory inertia, the shear deformation and the torque applied at both ends of the beam are considered in the governing equation. The complex displacement and the variable separation are introduced to derive the solution of the equation of each uniform beam element having constant cross-section. Then boundary conditions are applied to solve the total system. This method uses the mathematically exact solutions unlike numerical method such as the finite element method in solving the problem having the simultaneous differential equations of Timoshenko beam theory. the natural frequencies and the corresponding mode shapes are precise, especially the mode shapes are continuous.

  • PDF

Application of Substructure Synthesis Method for Analysis of Acoustic System (음향계의 해석을 위한 부분구조합성법의 적용)

  • 오재응;고상철;조용구
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.737-746
    • /
    • 1997
  • The substructure synthesis method is used for making it easy to analyze vibration systems generally in vibration field. In the past, this method has been to be used mainly because of shortage of computer memory and CPU time. But recently this method is used for analyzing complex structure or identifying the characteristics of systems precisely. The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The resutls of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results by FEM(finite element method) shows good agreement.

  • PDF