• 제목/요약/키워드: Natural Science and Engineering

검색결과 3,329건 처리시간 0.044초

Schiff Base 단일- 및 이메소제닉화합물의 액정성 (Liquid Crystalline Properties of Schiff Base Mono- and Dimesogenic Compounds)

  • 박주훈;최옥병;이진석;강근명;신주철;김기환;김학진;이창준;소봉근;이수민
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.176-180
    • /
    • 2005
  • 방향족 Schiff base 메소제닉 단위와 폴리메틸렌 유연격자로 이루어진 한 계열의 주사슬 액정중합체와 네 계열 화합물의 액정성을 살펴보았다. 이들의 열적 성질과 액정성은 시차 주사 열분석기와 가열판이 부착된 편광현미경에 의하여 조사하였다. 중합체와 화합물 액정상의 성질은 중앙 폴리메틸렌 유연격자와 말단 알콕시기의 길이에 크게 의존하였다. 중합체 I과 계열 III 화합물은 녹는점과 등방성액체화 전이온도에서 짝수-홀수 효과를 보여 주었으나 계열 II와 IV 화합물은 등방성액체화 전이온도에서만 짝수-홀수 효과를 나타내었다. 편광현미경을 통하여 이들의 광학구조를 관찰하였을 때 네마틱과 스멕틱 액정상을 형성하였다.

Electrochemical and Thermal Property Enhancement of Natural Graphite Electrodes via a Phosphorus and Nitrogen Incorporating Surface Treatment

  • Kim, Kyungbae;Kim, Han-Seul;Seo, Hyungeun;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2020
  • An efficient wet process approach to modifying natural graphite (NG) electrodes for Li-ion batteries is introduced in this paper. With homogeneous mixing and thermal decomposition of NG with diammonium phosphate ((NH4)2HPO4), phosphorus and nitrogen were successfully incorporated into the surface layer of NG particles. Electron microscopy and X-ray photoelectron spectroscopy analyses demonstrated that the surface was well modified by this process. As a result, the treated NG electrodes exhibited much improved electrochemical performance over pristine NG at two different temperatures: 25 ℃ and 50 ℃. Excellent capacity retention of 95.6% was obtained after 100 cycles at 50 ℃. These enhanced properties were confirmed in a morphology analysis on the cross-sections of the NG electrodes after galvanostatic cycling. The improved cycle and thermal stabilities can be attributed to the surface treatment with phosphorus and nitrogen; the treatment formed a stable solid electrolyte interphase layer that performed well when undergoing Li insertion and extraction cycling.

Study on Gas Hydrates for the Solid Transportation of Natural Gas

  • Kim, Nam-Jin;Kim, Chong-Bo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.699-708
    • /
    • 2004
  • Natural gas hydrate typically contains 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I and II. When referred to standard conditions, 1 ㎤ solid hydrate contains up to 200㎥ of natural gas depending on pressure and temperature. Such the large volume of natural gas hydrate can be utilized to store and transport a large quantity of natural gas in a stable condition. In the present investigation, experiments were carried out for the formation of natural gas hydrate governed by pressure, temperature, gas compositions, etc. The results show that the equilibrium pressure of structure II is approximately 65% lower and the solubility is approximately 3 times higher than structure I. It is also found that for the sub-cooling of structure I and II of more than 9 and 11 K respectively, the hydrates are rapidly being formed. It is noted that utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

Glyco-engineering of Biotherapeutic Proteins in Plants

  • Ko, Kisung;Ahn, Mi-Hyun;Song, Mira;Choo, Young-Kug;Kim, Hyun Soon;Ko, Kinarm;Joung, Hyouk
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.494-503
    • /
    • 2008
  • Many therapeutic glycoproteins have been successfully generated in plants. Plants have advantages regarding practical and economic concerns, and safety of protein production over other existing systems. However, plants are not ideal expression systems for the production of biopharmaceutical proteins, due to the fact that they are incapable of the authentic human N-glycosylation process. The majority of therapeutic proteins are glycoproteins which harbor N-glycans, which are often essential for their stability, folding, and biological activity. Thus, several glyco-engineering strategies have emerged for the tailor-making of N-glycosylation in plants, including glycoprotein subcellular targeting, the inhibition of plant specific glycosyltranferases, or the addition of human specific glycosyltransferases. This article focuses on plant N-glycosylation structure, glycosylation variation in plant cell, plant expression system of glycoproteins, and impact of glycosylation on immunological function. Furthermore, plant glyco-engineering techniques currently being developed to overcome the limitations of plant expression systems in the production of therapeutic glycoproteins will be discussed in this review.

단상 난류 자연대류 해석을 위한 난류 모델링 정확도 검증 (Validation of Turbulence Models for Analysis of a Single-Phase Turbulent Natural Convection)

  • 송익준;신경진;김정우;박익규;이승준
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.682-686
    • /
    • 2015
  • The objective of this study is to validate the performance of the current $k-{\epsilon}$ turbulence model for a single-phase turbulent natural convection, which has been considered an important phenomenon in nuclear safety. As a result, the natural convection problems in the 2D and 3D cavities previously studied are calculated by using the ANSYS Fluent software. The present results show that the current $k-{\epsilon}$ turbulent model accounting for the buoyancy effect is in good agreement with the previous results for the natural convection problems in the 2D and 3D cavities although some improvements should be required to get better prediction.

Effects of decay heat and cooling condition on the reactor pool natural circulation under RVACS operation in a water 2-D slab model

  • Min Ho Lee ;Dong Wook Jerng ;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1821-1829
    • /
    • 2023
  • The temperature distribution of the reactor pool under natural circulation induced by the RVACS operation was experimentally studied. According to the Bo' based similarity law, which could reproduce the temperature distribution of the working fluid under natural circulation, SINCRO-2D facility was designed based on the PGSFR. It was reduced to 1 : 25 in length scale, having water as a simulant of the sodium, which is the original working fluid. In general, temperature was stratified, however, effect of the natural circulation flow could be observed by the entrainment of the stratified temperature. Relative cooling contribution of the upper plenum (narrow gap) and lower plenum was approximately 0.2 and 0.8, respectively. In the range of decay heat from 0.2% to 1.0%, only the magnitude of the temperature was changed, while the normalized temperature maintained. Boundary temperature distribution change made a global temperature offset of the pool, without a significant local change. Therefore, the decay heat and cooling boundary condition had no significant effect on temperature distribution characteristics of the pool within the given range of the decay heat and boundary temperature distribution.