• Title/Summary/Keyword: Natural Oscillation

Search Result 162, Processing Time 0.03 seconds

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

A Study of Torsional Vibrations of Suspended Bridges (현수교(懸垂橋)의 비틀림진동(振動)에 관한 연구(硏究))

  • Min, Chang Shik;Kim, Saeng Bin;Son, Seong Yo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.27-37
    • /
    • 1983
  • A method of dynamic analysis is developed for torsional free vibrations of elliptical-box girder type or stiffening truss system suspension bridge. In this study, the method based on a finite element technique using a digital computer, is illustrated by two numerical examples, the Namhae Bridge which is located in Kyungsang nam-do opened on June, 1973, and the Mt. Chunma Bridge is simple span pedestrian's suspension bridge with lateral bracing system in Mt. Chunma, Kyungki-do, are used. In general, dynamic modes of complex suspension bridges are three-dimensional in form, i.e., coupling between vertical and torsional motions. However, introduced that amplitudes of oscillation are infinitesimal for coincidence with the purpose of it's use, thereupon, the torsional vibration analyses are treated without coupling terms. A sufficient number of natural frequencies and mode shapes for torsional free vibration are presented in this paper. In the case of Mt. Chunma Bridge, the natural frequencies and periods are computed with and without reinforcement, respectively, and compared their discrepancies. The influence of the auxiliary reinforcing cables is prevailing in the first few modes, namely, 1st and 2nd in symmetric and 1st, 2nd and 3rd in antisymmetric vibration, and conspicuous in the symmetric compared with the antisymmetric motion, but in the higher modes, this kind of simple accessory elucidates rether converse effects. In the Namhae Bridge, the results are compared with the Manual's obtained by wind tunnel test. It reveals commendable agreement.

  • PDF

Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method (앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.121-133
    • /
    • 2019
  • Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.

Reference values for respiratory system impedance using impulse oscillometry in school-aged children in Korea (학동기 소아에서 impulse oscillometry system로 측정한 폐기능 정상치)

  • Wee, Young Sun;Kim, Hyoung Yun;Jung, Da Wun;Park, Hye Won;Shin, Yoon Ho;Han, Man Yong
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.9
    • /
    • pp.862-867
    • /
    • 2007
  • Purpose : The impulse oscillometry (IOS) is applicable to young children because it requires minimal cooperation and a non-invasive method to measure the mechanics of respiratory system. This study aimed to develop the reference values in school-aged children in Korea, using IOS which is a modification of forced oscillation technique (FOT). Methods : Measurements were performed in 92 previously untrained healthy children, aged 7 to 12 years old, using IOS. We analyzed the relationships between the data about their age, height, weight, body surface area (BSA), body mass index (BMI) and the result of IOS using the linear regression test. Results : The success rate of IOS was 92.4%. Stepwise multiple regression of resistance of respiratory system (Rrs) and reactance of respiratory system (Xrs) in natural form for age, height, weight, BSA, BMI showed that height was the most significant predictor and altogether of 5 variables explained the Rrs and Xrs most. Our regression equations at multiple frequencys were comparable to published reference values, especially about the Rrs obtained at 5 Hz. Conclusion : IOS is a feasible method to measure the respiratory resistance in untrained children. We got the reference values using IOS and it seems to be useful to diagnose a variety of respiratory diseases.

Model on the Capillary Action-Induced Dynamics of Contact Lens (모세관 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2001
  • A mathematical model was proposed to analyze the damped motion of contact lens which is initially displaced from the equilibrium position. The model incorporates the differential equations and their numerical solution program, based on the formulations of restoring force arising from the capillary action in the tear-film layer between the lens and cornea. The model predicts the capillary action induced surface tension, time dependence of displacement of lens when it is released from the equilibrium position. It seems that the motion of lens is similar to the typical over-damped oscillation caused by the large viscous friction in the liquid layer between the cornea and lens. The effect of variables such as base curves, lens diameters and thickness of tear film layer were illustrated by the computer simulation of the derived program. The time required for the lens to return to the original position increases as the liquid layer thickness increases and it decreases as the diameter of lens increases. With the certain value of base curve the time interval is found to be minimum. The free vibrations of lenses were also simulated varying the parameters such as base curve, diameter, layer thickness. The resonant frequencies are inversely proportional to the liquid layer thickness and it increases as the lens diameter increases. The resonant frequency of lens has a maximum when the diameter is of certain value. If the external impulse or force of the same frequency as the natural frequency of contact lens acted on the cornea in vivo it may cause an excessive movement and thus it might cause the distortion 10 the lens or be pulled off the eye.

  • PDF

Analytical Study of Railroad Bridge for Maglev Propulsion Train with Dynamical Influence Variable (동적영향변수를 통한 자기부상열차용 철도교의 해석적 연구)

  • Yoo, Yi-Seul;Park, Won-Chan;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.532-542
    • /
    • 2018
  • Because maglev trains have a propulsion and absorption force without contact with the rails, they can drive safely at high-speed with little oscillation. Recently, test model of a maglev propulsion train was produced and operated, and has since been chosen as a national growth industry in South Korea; there have been many studies and considerable investment in these fields. This study examined the dynamic responses due to bridge-maglev train interaction and basic material to design bridges for maglev trains travelling at high-speed. Depending on the major factors affecting the dynamic effects, the scope of this study was restricted to the relationship between dynamic responses. A concrete box girder was chosen as a bridge model and injured train and rail types in domestic production were selected as the moving train load and guideway analysis model, respectively. From the analysis results, the natural frequency of a bridge for a maglev train, which has a deflection limit L/2000, was higher than those of bridges for general trains. The dynamic responses of the girder of the bridge for a maglev train showed a substantial increase in proportion to the velocities of the moving train like other general bridge cases. Maximum dynamic response of the girder is shown at a moving velocity of 240km/h and increased with increasing moving velocity of train. These results can be used to design a bridge for maglev propulsion trains and provide the basic data to confirm the validity and verification of the design code.

Dialectics of Motherhood-based Existence - Focusing on Charlotte's Web -

  • Yun, Jeong-Mi;Lee, Soo-Kyung
    • Cartoon and Animation Studies
    • /
    • s.45
    • /
    • pp.345-366
    • /
    • 2016
  • In Charlotte's Web, each character motivates the other and strives for the new generation based upon motherhood. The intersection between life and death is directly and symbolically addressed as a component of the natural life cycle. Borrowing Kristeva's theory of the semiotic, the symbolic and the chora, this study investigates the dialectical oscillation between the semiotic and the symbolic and the social circumstances of subjects in signification as well as highlights the features of character growth. From a feminist perspective, herein, motherhood is translated not only as a robust foundation for relations among characters but also as an impetus for developing into a good and influential individual who embraces all organisms with care and consideration. Charlotte's Web clearly shows how the semiotic and symbolic elements of each being, united by motherhood, interact and lead to positive change. Though the world appears to consist of incompatible ingredients, they are combined. Charlotte's Web awakens the fact that their harmony makes a commitment to building a more wonderful place. It can be suggested that Charlotte's Web, where animal characters contain two tendencies of the human mind, exhibits human development proceedings.

The Paradox of the Plankton (플랑크톤 패러독스)

  • Lee, Hak Young;Moon, Sung-Gi;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.601-606
    • /
    • 2015
  • Hutchinson (1961) proposed that the large number of species in most plankton communities is remarkable in review of the competitive exclusion principle, which suggests that in homogeneous, well-mixed environments species that compete for the same resources cannot coexist. The principle of competitive exclusion would lead us to conclude that only a few species could coexist in such circumstances. Nevertheless, numerous competing species in most natural habitats are able to coexist, while generally only few resources (niches) limit these communities. It is coined “the paradox of plankton” by Hutchinson. We reviewed some literature of the proposed solutions and give a brief overview of the mechanisms proposed so far. The proposed mechanisms that we discuss mainly include spatial and temporal heterogeneity in physical and biological environment, externally imposed or self-generated spatial segregation, horizontal mesoscale turbulence of ocean characterized by coherent vortices, oscillation and chaos generated by several internal and external causes, stable coexistence and compensatory dynamic under fluctuating temperature in resource competition, and finally the role of toxin-producing phytoplankton in maintaining the coexistence and biodiversity of the overall plankton populations. Especially we sited Roy and Chattopadhyay’s reviews and their toxin-producing hypothesis by phytoplankton. This review may be some information to study plankton communities and effect to put the solutions to the paradox that have been proposed over the years into perspective.

Experimental Study for the Resonance Effect of the Power Buoy Amplitude (공진형 전력부이의 상하변위증폭 효과에 관한 실험적 연구)

  • Kweon, Hyuck-Min;Koh, Hyeok-Jun;Kim, Jung-Rok;Choi, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, laboratory experiments and numerical simulations were conducted to test the performance of resonance power buoy system proposed by Kweon et al.(2010). The system is composed of a linear generator and a mooring buoy. The mover of the linear generator mainly has heave motion driven by vertical oscillation of the buoy. In this system, the velocity discrepancy between the mover and the buoy makes electricity. However, ocean wave energy as a natural resource around Korean peninsula is comparatively small and the driving force for producing electricity is not enough for commercialization. Therefore, it is necessary that the buoy motion be amplified by using resonance characteristics. In order to verify the resonance effects on the test power buoy, the experimental investigations were conducted in the large wave flume (length of 110 m, width of 8 m, maximum depth of 6 m) equipped with regular and random plunger wave generator. The resonance draft of test power buoy is designed for the corresponding period of incident wave, 1.96 sec. Regular wave test results show that the heave response amplitude operator(RAO) by a test buoy has the amplification of 5.66 times higher compared to the wave amplitude at the resonance period. Test results of random waves show that the buoy has the largest spectrum area of 20.73 times higher at the point of not the resonance period but the shorter one of 1.85 sec. Therefore this study suggests the resonance power buoy for wave power generation for commercial application in the case of the coastal and oceanic area with smaller wave energy.

An Experimental Study on NOx Emissions with Hydrogen and Natural gas Co-firing for EV burner of GT24 (GT24 가스터빈용 EV 버너의 수소혼소에 따른 질소산화물 배출 특성에 대한 실험적 연구)

  • Jeongjae Hwang;Won June Lee;Kyungwook Min;Do Won Kang;Han Seo Kim;Min Kuk Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.85-91
    • /
    • 2023
  • In this study, an experimental study was conducted on the flame behavior, combustion dynamics, and NOx emission characteristics for hydrogen co-firing with the EV burner which is the first stage combustor of GT24. It was confirmed that as the hydrogen co-firing rate increases, the NOx emission increases. This change was elucidate to be the result of a combination of changes in penetration depth due to changes in fuel density, reduction in fuel mixing due to changes in flame position due to increased flame propagation speed, and oscillation of fuel mixedness due to combustion instability. Through pressurization tests in the range of 1.3 to 3.1 bar, NOx emission characteristics under high-pressure operating conditions were predicted, and based on this, the hydrogen co-firing limits of the EV burner was evaluated.