• 제목/요약/키워드: Natural Language Analysis

검색결과 523건 처리시간 0.027초

Forecasting the Business Performance of Restaurants on Social Commerce

  • Supamit BOONTA;Kanjana HINTHAW
    • 유통과학연구
    • /
    • 제22권4호
    • /
    • pp.11-22
    • /
    • 2024
  • Purpose: This research delves into the various factors that influence the performance of restaurant businesses on social commerce platforms in Bangkok, Thailand. The study considers both internal and external factors, including but not limited to business characteristics and location. Moreover, this research also analyzes the effects of employing multiple social commerce platforms on business efficiency and explores the underlying reasons for such effects. Research design, data, and methodology: Restaurants can be classified into different price ranges: low, medium, and high. To further investigate, we employed natural language processing AI to analyze online reviews and evaluate algorithm performance using machine learning techniques. We aimed to develop a model to gauge customer satisfaction with restaurants across different price categories effectively. Results: According to the research findings, several factors significantly impact restaurant groups in the low and mid-price ranges. Among these factors are population density and the number of seats at the restaurant. On the other hand, in the mid-and high-price ranges, the price levels of the food and drinks offered by the restaurant play a crucial role in determining customer satisfaction. Furthermore, the correlation between different social commerce platforms can significantly affect the business performance of high-price range restaurant groups. Finally, the level of online review sentiment has been found to influence customer decision-making across all restaurant types significantly. Conclusions: The study emphasizes that restaurants' characteristics based on their price level differ significantly, and social commerce platforms have the potential to affect one another. It is worth noting that the sentiment expressed in online reviews has a more significant impact on customer decision-making than any other factor, regardless of the type of restaurant in question.

고객 리뷰를 통한 NLP 기반 데이터 기술 활용: 고객 인사이트 도출과 쿠션 제품 개선 방안 연구 (Utilizing NLP-based Data Techniques from Customer Reviews: Deriving Insights and Strategies for Cushion Product Improvement)

  • 임설아;조미연;조은비;우수한
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.49-60
    • /
    • 2024
  • 본 연구의 목적은 TV홈쇼핑 화장품 쿠션 상품 고객의 평가를 기초로 한 신상품 개발 제언을 도출하는 것이다. 분석 대상은 TV홈쇼핑을 통해 쿠션을 구매한 30~70대 여성 고객의 평가 20만 개를 파이썬 라이브러리인 셀레니움으로 크롤링하여 정제한 후 NLP, 텍스트 마이닝, 빈도, TF-IDF 분석으로 결과를 도출하였다. 연구의 주요 분석결과를 요약하면 다음과 같다. TV홈쇼핑의 타켓 연령대는 50-60대가 메인이며, 광채, 잡티, 주름커버, 밀착력에 큰 관심이 있었고, 쿠션 케이스가 예쁘고, 특히 모녀, 자매, 지인 등과 함께 사용하는 것을 선호하며, 선물용으로도 쿠션 제품을 고려한다는 것을 예측할 수 있다. 이에 함께 참고할 수 있는 제품의 성분이나 구성, 마케팅 전략 등에 대한 제언을 도출하였다. 제품 성분으로는 S.Acamella(스필란테스 아크멜라) 추출물이나 AHA(Alpha Hydroxy Acid) a- 또는 b- 성분을 활용하여 개발하는 것이 주요 제언이다. 다음으로, 고객들은 상품의 외관과 구성에 특별한 관심이 있었으며, 부모나 친구 등과 같은 주변 인물에게 선물로써 상품을 고려하고 있어 이를 중심으로 한 마케팅 전략 모색이 필요하다.

Development of big data based Skin Care Information System SCIS for skin condition diagnosis and management

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.137-147
    • /
    • 2022
  • 피부상태의 진단과 관리는 뷰티산업종사자와 화장품산업종사자에게 그 역할을 수행함에 있어서 매우 기초적이며 중요한 기능이다. 정확한 피부상태 진단과 관리를 위해서는 고객의 피부상태와 요구사항을 잘 파악하는 것이 필요하다. 본 논문에서는 피부상태 진단 및 관리를 위해 소셜미디어의 빅데이터를 사용하여 피부상태 진단 및 관리를 지원하는 빅데이터기반 피부관리정보시스템 SCIS를 개발하였다. 개발된 시스템을 사용하여 텍스트 정보 중심의 피부상태 진단과 관리를 위한 핵심 정보를 분석하고 추출할 수 있다. 본 논문에서 개발된 피부관리정보시스템 SCIS는 빅데이터 수집단계, 텍스트전처리단계, 이미지전처리단계, 텍스트단어분석단계로 구성되어 있다. SCIS는 피부진단 및 관리에 필요한 빅데이터를 수집하고, 텍스트 정보를 대상으로 핵심단어의 단순빈도분석, 상대빈도분석, 동시출현분석, 상관성분석을 통해 핵심단어 및 주제를 추출하였다. 또한 추출된 핵심단어 및 정보를 분석하고 산포도, NetworkX, t-SNE 및 클러스터링 등의 다양한 시각화 처리를 함으로써 피부상태 진단 및 관리에 있어 이를 효율적으로 사용할 수 있도록 하였다.

텍스트 마이닝 분석을 통한 노인학대 관련 연구 동향 분석 : 2004년~2021년까지 발행된 국내 학술논문을 중심으로 (Analysis of Research Trends in Elder Abuse Using Text Mining : Academic Papers from 2004 to 2021.)

  • 윤기혁
    • 사물인터넷융복합논문지
    • /
    • 제8권4호
    • /
    • pp.25-40
    • /
    • 2022
  • 본 연구는 초고령화사회 진입을 목전에 두고 있는 우리나라에서 지속적으로 증가하고 있는 노인학대 학술 연구 동향을 파악하기 위해서 텍스트 마이닝 기법을 활용하였다. 분석 자료는 노인보호전문기관이 설립된 2004년부터 2021년까지 18년간 국내 전문학술지에 게재된 노인학대 관련 학술논문의 제목, 주제어, 초록을 텍스트로 전환하고, 분석 시기는 3개 구간으로 세분화 하여 논문의 패턴 및 전체 데이터 속에 의미를 파악하였다. 연구 결과를 요약하면 다음과 같다. 첫째, 본 연구에서 총 249편의 논문이 선정되었고(1구간은 81편, 2구간 64편, 3구간은 104편이 논문이 각각 선정). 연 평균 13.8편으로 2014년 이후 꾸준히 증가 후 2020년부터 연 평균이하로 감소하고 있다. 둘째 노인학대 텍스트 마이닝 결과 i) 상위 주요 키워드인 단어 빈도분석 결과 모든 구간(2004년~2021년)에 공통적으로 나타난 키워드는 노인학대, 노인, 영향, 요인, 인식, 가족, 사회, 방안, 경험, 학대피해노인, 학대예방, 우울 등이다. ii) TF-IDF 분석 결과 모든 구간에 공통적으로 출현한 키워드는 영향, 인식, 사회, 방안, 학대예방, 경험, 우울 등으로 나타났고, iii) 연결중심성 분석 결과 전 구간에 공통적으로 출현한 키워드는 노인학대, 노인, 영향, 요인, 특성, 인식, 가족, 방안, 사회, 학대예방, 경험 등이다. 셋째, CONCOR 분석 결과 1구간은 5개의 군집으로, 2구간은 7개의 군집으로, 3구간은 6개의 군집으로 각각 나타났다. 상기의 분석 결과 등을 바탕으로 노인학대 학술 연구의 동향을 살펴보았고, 이를 바탕으로 향후 노인학대 학술 연구를 위한 다양한 제언을 제시하였다.

장비점검 일지의 비정형 데이터분석을 통한 고장 대응 효율화 사례 연구 (Unstructured Data Analysis using Equipment Check Ledger: A Case Study in Telecom Domain)

  • 주연진;김유신;정승렬
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.127-135
    • /
    • 2020
  • 비정형 데이터의 수집, 분석 그리고 활용에 대한 필요성이 대두되고 있지만 여전히 비정형 데이터를 효과적으로 활용하지 못하고 있는 실정이다. 본 연구에서는 국내 유수 이동통신 기업의 통신 시설장비 점검 시스템에 기록된 비정형데이터를 분석하여 장비고장 대응과 예방에 적극 활용할 수 있는 기반을 만들고자 하였고, 약 220만 건의 작업일지 데이터를 텍스트 마이닝을 통해 구조화/정형화 하였다. 이를 위해 장비 고장과 관련된 4가지 분석 프레임, 고장인지, 고장원인, 고장대상, 조치결과를 구성하였고 분석 결과로는 크게 3가지의 효율화 방안과 관련한 인사이트를 얻을 수 있었다. 첫 번째로는 신속한 조치를 통한 시간 단축을 도모하고, 두 번째로는 고장장비 Unit 수요를 예측하고, 마지막으로 현장 출동의 최소화를 지원할 수 있을 것으로 기대되었다. 결론적으로, 본 사례연구는 통신시설 장비 고장 대응을 위해 데이터 분석 대상을 정형 데이터뿐만 아니라 장비일지라는 비정형 빅데이터로도 범위를 확장했으며, 이를 분석에 활용하기 위해 처음으로 텍스트 마이닝을 시도를 했다는데 의의를 가진다. 또한 N사는 정형 데이터 뿐 만아니라 년 80만 건씩 축적되던 비정형 데이터의 활용 가치를 확인할 수 있던 기회를 가졌으며, 향후 비정형 데이터의 활용 방안에 대한 발전방향 그리고 추후의 정형 데이터와의 연계 분석 방안 등에 대한 가이드를 확보할 수 있었다.

한국어 장소 리뷰를 이용한 공간 감성어 사전 구축 방법 (Method for Spatial Sentiment Lexicon Construction using Korean Place Reviews)

  • 이영민;권필;유기윤;김지영
    • 대한공간정보학회지
    • /
    • 제25권2호
    • /
    • pp.3-12
    • /
    • 2017
  • 위치 기반 서비스를 이용하여 자신이 방문한 장소에 대한 긍정 혹은 부정적 의견을 리뷰로 남기는 것이 일상화되고 있다. 실제 방문자가 작성한 장소 리뷰에 대한 감성분석 결과는 잠재적 소비자뿐 아니라 기업에게도 유용한 정보를 제공할 수 있다. 장소에 대한 감성분석을 실시하기 위해서는 감성분석의 기준이 되는 어휘에 대한 사전이 필요하다. 그러나 현재까지 장소를 표현하는 공간 감성어에 대한 사전이 구축된 바 없다. 이에 본 연구는 실제 방문자가 한국어로 작성한 장소 리뷰 데이터를 분석하여 공간 감성어 사전을 구축하는 방법을 제안하며, 여러 장소 카테고리 중 테마공원을 대상으로 공간 감성어 사전을 구축하였다. 이를 위해 자연어 처리 기법과 통계적 기법을 활용하였으며, 사전에 포함되는 공간 감성어는 감성의 극성에 대한 정보와 극성의 정도에 대한 확률점수를 포함하고 있다. 본 연구에서 구축한 공간 감성어 사전은 3개의 테이블(SSLex_SS, SSLex_single, SSLex_combi)로 구성되며, 총 219개의 어휘를 포함한다. 이를 바탕으로 트위터에서 테마공원에 대해 작성된 글을 대상으로 감성분석을 실시하였으며, 감성의 극성 분류에 대한 전체 정확도가 0.714로 산출됨에 따라 사전의 유효성을 확인할 수 있었다.

Sentiment Analysis of Product Reviews to Identify Deceptive Rating Information in Social Media: A SentiDeceptive Approach

  • Marwat, M. Irfan;Khan, Javed Ali;Alshehri, Dr. Mohammad Dahman;Ali, Muhammad Asghar;Hizbullah;Ali, Haider;Assam, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.830-860
    • /
    • 2022
  • [Introduction] Nowadays, many companies are shifting their businesses online due to the growing trend among customers to buy and shop online, as people prefer online purchasing products. [Problem] Users share a vast amount of information about products, making it difficult and challenging for the end-users to make certain decisions. [Motivation] Therefore, we need a mechanism to automatically analyze end-user opinions, thoughts, or feelings in the social media platform about the products that might be useful for the customers to make or change their decisions about buying or purchasing specific products. [Proposed Solution] For this purpose, we proposed an automated SentiDecpective approach, which classifies end-user reviews into negative, positive, and neutral sentiments and identifies deceptive crowd-users rating information in the social media platform to help the user in decision-making. [Methodology] For this purpose, we first collected 11781 end-users comments from the Amazon store and Flipkart web application covering distant products, such as watches, mobile, shoes, clothes, and perfumes. Next, we develop a coding guideline used as a base for the comments annotation process. We then applied the content analysis approach and existing VADER library to annotate the end-user comments in the data set with the identified codes, which results in a labelled data set used as an input to the machine learning classifiers. Finally, we applied the sentiment analysis approach to identify the end-users opinions and overcome the deceptive rating information in the social media platforms by first preprocessing the input data to remove the irrelevant (stop words, special characters, etc.) data from the dataset, employing two standard resampling approaches to balance the data set, i-e, oversampling, and under-sampling, extract different features (TF-IDF and BOW) from the textual data in the data set and then train & test the machine learning algorithms by applying a standard cross-validation approach (KFold and Shuffle Split). [Results/Outcomes] Furthermore, to support our research study, we developed an automated tool that automatically analyzes each customer feedback and displays the collective sentiments of customers about a specific product with the help of a graph, which helps customers to make certain decisions. In a nutshell, our proposed sentiments approach produces good results when identifying the customer sentiments from the online user feedbacks, i-e, obtained an average 94.01% precision, 93.69% recall, and 93.81% F-measure value for classifying positive sentiments.

AI기반 콜센터 실시간 상담 도우미 시스템 개발 - N은행 콜센터 사례를 중심으로 (Development of AI-based Real Time Agent Advisor System on Call Center - Focused on N Bank Call Center)

  • 류기동;박종필;김영민;이동훈;김우제
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.750-762
    • /
    • 2019
  • 기업의 대고객 접점으로써 콜센터의 중요성은 커지고 있다. 하지만, 콜센터는 상담사의 지식 부족과 업무 부적응에 따른 잦은 이직으로 인해 상담사 운영이 어렵고, 이로 인한 고객 서비스 품질 저하의 문제를 안고 있다. 이에 본 연구에서는 상담사에게 업무 지식에 대한 부하를 줄이고 서비스 품질을 향상 시키기 위해 음성 인식 기술과 자연어 처리 및 질의응답을 지원하는 AI 기술과 PBX, CTI 등의 콜센터 정보시스템을 결합하여 실시간으로 상담사에게 고객의 질의 내용에 대한 답변을 제공해주는 "실시간 상담 도우미" 시스템 개발 방안에 대해 N은행 콜센터 사례를 통해 연구하였다. 사례연구 결과, 실시간 통화 분석을 위한 음성인식 시스템의 구성방안과, 질의응답 시스템의 자연어처리 성능 향상을 위한 말뭉치 구축 방안을 확인 할 수 있었으며, 특히 개체명 인식기의 경우 도메인에 맞는 말뭉치 학습 후 정확도가 31% 향상됨을 확인하였다. 또한, 상담 도우미 시스템을 적용한 후 상담 도우미의 답변에 대한 상담사들의 긍정적 피드백 비율이 93.1%로써 충분히 상담사 업무에 도움을 주고 있음을 확인하였다.

Analysis of Horticultural Activities in the Teacher's Guidebooks of Nuri Curriculum for 5-Year-Olds

  • Choi, Byung Jin;Jeong, Yeo Jin;Kim, Mi Jin;Yun, Suk Young
    • 인간식물환경학회지
    • /
    • 제23권2호
    • /
    • pp.211-220
    • /
    • 2020
  • The purpose of this study was to analyze the frequency and contents of horticultural activities in 696 individual activities listed in 11 teacher's guidebooks of Nuri Curriculum for 5-year-olds, and to find out the perceptions of horticultural activities in the formal curriculum. The target horticultural activities that were selected were those using natural objects like potted plants, water, wind, soil, stones, etc. as the topic or subject of activities, and those with different topics but are mentioning plants or natural objects as an example at least twice. The 150 selected horticultural activities were classified by life-based theme, activity type, activity domain, and medium. As a result of examining horticultural activities by life-based theme, there were 150 horticultural activities (21.55%): 40 in Spring, Summer, Autumn and Winter (5.75%), 34 in Animals, Plants, and Nature (4.89%), 22 in Environment and Life (3.16%), 19 in Our Country (2.73%), and nine in Our Neighborhood (1.29%), nine in Various Countries of the World (1.29%), four in Health and Safety (0.57%), four in Living tools (0.57%), four in Transportation (0.57%), three in Kindergarten and Friends (0.43%), two in Me and My Family (0.29%; χ2=130.427, p < .001). As a result of examining horticultural activities by activity type, there were 61 free choice activities (40.67%), 80 large and small group activities (53.33%), and nine outdoor play activities (6.00%), indicating that outdoor play was the fewest activity type (χ2=54.040, p < .001). The results of analyzing horticultural activities by activity domain showed that there were 25 in conversation (16.67%), 19 in science (12.50%), 14 in art (9.33%), 14 in cooking (9.33%), 10 in fairy tales (6.00%), nine in music (6.00%), eight in language (5.33%), eight in number operation (5.33%), eight in others (5.33%), six in children's plays (4.0%), six in games (4.0%), four in body and movement (2.67%), three in stacking (2.00%), three in roles (2.00%), three in rhythm (2.00%), two in children's poems (1.33%), two in field experience (1.33%) and one in outside play (0.67%; χ2=87.600, p < .001). As a result of examining the mediums used in the horticultural activities, 46 activities (30.67%) directly used plants as the mediums, 11 activities (7.33%) used soil such as stones, gravel, and earth as the mediums instead of plants, four activities (2.67%) used dry plants such as branches and dry leaves as the mediums, and 89 activities (59.33%) used videos, photos of plants, and pictures of plants as the mediums (χ2=121.307, p < .001).

블로그 데이터 감성분석을 통한 북한산둘레길 구간별 선호도 평가 (Evaluation of Preference by Bukhansan Dulegil Course Using Sentiment Analysis of Blog Data)

  • 이성희;손용훈
    • 한국조경학회지
    • /
    • 제49권3호
    • /
    • pp.1-10
    • /
    • 2021
  • 본 연구는 탐방객이 자유롭게 서술한 블로그 텍스트 데이터를 자연어 처리 기술 중 하나인 감성분석을 활용하여 북한산둘레길의 선호도를 평가하고, 선호 요인과 비선호 요인을 도출하는 것을 목적으로 하였다. 이에 2019년 1년 동안 작성된 블로그를 수집하고 21개 둘레길 구간별 텍스트에 나타난 긍정 및 부정 감성 단어 도출을 통해 감성점수를 산출하였다. 이후 내용분석을 통해 탐방객이 어떤 요소로 인해 구간을 선호하거나 선호하지 않는지 파악하였다. 북한산둘레길에 대해 작성된 블로그에서는 긍정적인 단어가 평균적으로 약 73% 출현하고 있었고, 각 구간별 게시물의 감성 극성 비율에서도 긍정적인 문서의 비율이 부정적인 문서의 비율보다 높았다. 이를 통해 탐방객은 북한산둘레길에 대하여 대체로 긍정적으로 인식하고 있는 것으로 나타났다. 그럼에도 감성점수를 도출한 결과, 21개 둘레길 구간에서는 선호하는 구간과 선호하지 않는 구간이 존재하고 있었다. 선호 구간과 비선호 구간에 대해 탐방객은 난이도가 낮고 부담 없이 걸을 수 있는 구간을 선호하고 있었고, 경관에 대한 여러 요소(시각, 청각, 후각 등)가 조화롭고 계절감이 뚜렷해 다양한 경관이 연출되는 곳, 경관 시퀀스의 변화가 존재하는 구간을 선호하는 것으로 나타났다. 또한 탐방객은 전망대, 조망점 등의 뷰포인트 유무를 둘레길에서의 주요 요소로 인식하고 있었고, 접근성이 우수하고 안내판 등 정보 제공이 원활하게 이뤄지는 구간에 대해 선호도가 더 높은 것을 알 수 있다. 반면, 도로와 인접함에 따라 발생되는 주변 소음과 과도한 시가지 비율, 구간별 난이도 불균형 등으로 인한 둘레길 동선 불만족이 비선호 요인으로 크게 작용하고 있었으며, 경관 단절 및 구간에 대한 정보 부족 등이 선호도를 떨어트리는 원인으로 나타났다. 본 연구의 결과는 국립공원뿐만 아니라 근교 산림 녹지 관리에 있어서 둘레길 정비 및 개선방안 마련에 활용될 수 있으며, 연구에 활용된 감성분석은 자연지역에 대한 실제 이용자들의 반응을 지속적으로 모니터링 할 수 있다는 점에 의의가 있다. 다만 사전에 정의된 감성사전을 기반으로 평가하였기에 지속적인 사전 업데이트가 필요하다. 또한 소셜미디어 특성상 부정적인 견해보다는 긍정적인 내용을 공유하는 경향이 존재하기 때문에, 현장 설문조사 등의 분석 결과와 비교, 검토하는 작업이 필요하다.