• Title/Summary/Keyword: Natural Frequency and Mode

Search Result 1,006, Processing Time 0.028 seconds

Analysis of Free Vibration Characteristics of Tapered Friction Piles in Non-homogeneous Soil Layers (불균질 지반에 설치된 테이퍼 마찰말뚝의 자유진동 특성 분석)

  • Lee, Joon Kyu;Ko, Junyoung;Lee, Kwangwoo;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2019
  • This paper presents a new analytical model for estimating the free vibration of tapered friction piles. The governing differential equation for the free vibration of statically axially-loaded piles embedded in non-homogeneous soil is derived. The equation is numerically integrated by the Runge-Kutta method, and then the eigenvalue of natural frequency is determined by the Regula-Falsi scheme. For a cylindrical non-tapered pile, the computed natural frequencies compare well with the available data from literature. Numerical examples are presented to investigate the effects of the tapering, the skin friction resistance, the end condition of the pile, the vertical compressive loading, and the soil non-homogeneity on the natural frequency and mode shape of tapered friction piles.

Free Vibration Analysis of Helical Springs (헬리컬 스프링의 자유진동 해석)

  • 김월태;정명조;김현수;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.977-983
    • /
    • 2003
  • Free vibration analysis of helical springs was performed by the use of the commercial finite element analysis program, ANSYS. The investigation of national frequency was focused on the effect of various parameters such as boundary conditions, spring indices, number of coil turns and helix angles which are considered to affect the free vibration of a spring. The finite element method was validated by comparison with the result of a previouosly published literature. The similarity of frequency trend was shown among three boundary conditions: clamped-clamped, free-free, simpliy supported-simply supported but there was no similarity in light of mode shapes among them. Several modes showed similar frequencies on and near the frequencies identified by the natural frequency formula of Wahl. Natural frequencies increased with spring indices and number of turns decreasing and with helix angles increasing. The results investigated by finiete element method were compared with the experemental result and theoretical result and showed a good agreement among them.

  • PDF

A Study on the Seismic Isolated Bed System Considering the Seismic Stability of an Emergency Diesel Generator (내진안정성을 고려한 비상디젤발전기의 방진베드시스템에 관한 연구)

  • Ha, Neung-Gyo;Kim, Chae-Sil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1155-1163
    • /
    • 2022
  • This study proposes a technology to ensure the seismic stability of a 1,000 kW diesel engine-type emergency generator by applying a seismic isolated bed system. The technology allows the static analysis by making the first natural frequency of the installed entire emergency generator larger than the earthquake cutoff frequency of 33 Hz. First a three dimensional model for the generator was made with simplification for mode analysis. A new bed system with springs, shock absorbers, stoppers was then devised. Next, The mode analysis for the finite element model equipped by the bed system was performed. the 1st natural frequency above 33 Hz, the seismic safety cutoff frequency, was calculated to be 152.92 Hz. Finally, based on the seismic stability theory, the von-Mises equivalent stresses derived by structural analysis under the Upset and Faulted conditions were 0.01603 Mpa, and 32.06 Mpa, respectively. so seismic stability was confirmed.

A Study on the Optimal Design for Aluminum Boom Shape in High Ladder Vehicles (고가사다리차의 알루미늄 붐 형상의 최적설계에 관한 연구)

  • Kim, Hong-Gun;Nah, Seok-Chan;Hong, Dong-Pyo;Cho, Nam-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.96-102
    • /
    • 2007
  • An Optimal shape design of the boom system in high ladder vehicles is performed using 3-D finite element method (FEM). Results of structural analyses providing displacements, stresses are implemented for the optimum shape design. Lanzcos algorithm is used for the modal analysis in order to find natural frequencies. The optimal shape including cross sectional thickness and length of the boom system is controlled by the subproblem method besed on displacement and Von Mises stress. It is found that a plenty of materials can be saved by using shape design optimization in high ladder vehicles. It is also found that the natural frequency is increased until 6th mode and maintained similarly or decreased after 6th mode.

Structural Damage Detection Using Wavelet Transform (웨이블렛 변환을 이용한 구조물의 결함 진단)

  • 김창구;박광호;기창구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.194-200
    • /
    • 1999
  • Localized damage to a structure affects its dynamic properties, and much work has been undertaken investigating the variation of natural frequencies, damping ratios and mode shapes. This paper presents a technique based on wavelet transform to detect the existences and locations of structural damages. The procedure operates solely on the mode shape from the damaged structure, and does not require a priori knowledge of the undamaged structure. The procedure is developed using a 32-story shear building model. Applying wavelet transform to the mode shape successfully identifies the location of damage. The procedure is best suited to the mode shape obtained from the fundamental natural frequency. The wavelet coefficients from the higher mode shapes can be used to verify the location of damage, but they are not as sensitive as the wavelet coefficients of the lower mode shapes.

  • PDF

Dynamic characteristic for vibration mount of MG-Set (전동-발전기의 방진 마운트에 기인한 공진현상 및 동특성 규명)

  • Yoo, Musang;Oh, Kyonghan;Joo, Ingouk;Kim, Hyojin;Roh, Cheolwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.816-821
    • /
    • 2013
  • This case study presents a practical method to reduce resonant vibration of generator-motor set. The generator is driven at 1800rpm by induction integral motor. The vibration is below alarm limits, but the dominant frequency of vibration is sub-synchronous and close to that of bearing fault signal in spite of new bearings. To find an mechanism of abnormal vibration, ODS and Modal analysis is carried out. The measured modal characteristics were compared with those of FE Analysis. The ODS mode at rated speed is consistent with system natural frequency mode that is excited by bearings. To reduce vibration level, the isolation mount at system base is changed with new rubber mount for lower natural frequency.

  • PDF

Free vibration analysis of clamped free circular cylindrical shells (일단고정-일단자유 원통 셸의 진동 해석)

  • 임정식
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.45-56
    • /
    • 1996
  • Frequency equation for clamped-free circular cylindrical thin shell is derived by the application of Rayleigh-Ritz method using the Sanders shell equation. The cubic frequency equation is solved for each axial and circumferential mode number. Integration of the beam characteristic funcitions was performed via Mathematica which results in more accurate integration of the beam functions that affect the accuracy of the frequency. The natural frequencies from this calculation are compared with existing results. It shows that this calculation predicts natural frequencies closer to the test results than existing results.

  • PDF

Performance Characteristics of the Automotive TDS (Tube Drive Shaft) by the Rotary Swaging Process (로터리 스웨이징 공정으로 성형된 자동차 중공 드라이브샤프트의 성능특성 연구)

  • 임성주;이낙규;나경환;이지환
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.654-661
    • /
    • 2003
  • A monobloc TDS(Tube Drive Shaft) has been developed by using the rotary swaging process which is one of the incremental forming process. In order to estimate the developed TDS performance characteristics such as natural frequency, strength, stiffness and mass, finite element analysis has been carried out using commercial software, MSC/NASTRAN. The calculated performance characteristics have been compared with analysis results of SDS(Solid Drive Shaft) to know how much improve the performance characteristics. Also the sensitivity analyses of design parameters for the tube length and diameter have been performed. From the analysis results, it was found that the TDS allowed for a high frequency and could be designed to be much lighter than SDS. This advantage can give possibility to tune the NVH (Noise-Vibration-Harshness) characteristics.

Study for Natural Frequency of Offshore Wind Turbine Tower (해상 풍력 발전용 Tower의 고유 진동 해석에 관한 연구)

  • Won, Jong-Bum;Lee, Kang-Su;Son, Choong-Yul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1296-1301
    • /
    • 2006
  • The Object of this paper which study for natural frequency of Offshore Wind Turbine Tower with Composite Material and Steel. The Composit Material Tower consist of shell type and stiffened shell type which is made by the method of Filament Winding. And the component of Composite material is used by the Roving RS220PE-535. The Steel Material Tower consist of shell type and stiffened shell type which is made of Mild steel. The Type of Stiffener is hats. This paper compare the Composit Material Offshore Wind Turbine Tower with the Steel Material Offshore wind Turbine Tower and study for Natural Frequency and Mode Shapes.

  • PDF

The Natural Frequency Maximization of Beam Structures by using Modal Strain Energy based Topology Optimization Technique (모드변형에너지를 기저로 하는 위상최적화기법을 사용한 보의 고유진동수 최대화)

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.4
    • /
    • pp.89-96
    • /
    • 2007
  • The fundamental frequency maximization of beam structures is carried out by using strain energy based topology optimization technique. It mainly uses the modal strain energy distributions induced by the mode shapes of the structures. The modal strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. The resizing algorithm devised from the optimality criteria method is used to update the hole size of the cell existing in each finite element. The beams with three different boundary conditions are used to investigate the optimum topologies against natural mode shapes. From numerical test, it is found to be that the optimum topologies of the beams produced by the adopted technique have hugh increases in some values of natural frequencies and especially the technique is very effective to maximize the fundamental frequency of the structures.

  • PDF