• Title/Summary/Keyword: Natural Frequency Ratio

Search Result 671, Processing Time 0.025 seconds

Lock-on Characteristics of wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성)

  • Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.18-21
    • /
    • 2004
  • Lock-on characteristics of the flow around a circular cylinder performing a rotationally oscillation with a relatively high forcing frequency have been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), amplitude of oscillation $(\theta_A)$, and frequency ratio $F_R=f_f\;/\;f_n$, where $f_f$ is the forcing frequency and if is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14\times10^3,\;\pi/15\leq\theta_A\leq\pi/3$, and $F_R=1.0$. The effects of this active control technique on the lock-on flow regime of the cylinder wake were evaluated through wake velocity measurements and spectral analysis of hot-wire signals. The rotary oscillation modified the flow structure of near wake significantly. The lock-on phenomenon was found to occur in the range of frequency encompassing the natural vortex shedding frequency. In addition, when the amplitude of oscillation is less than a certain value, the lock-on phenomenon was occurred only at $F_R=1.0$. The lock-on range expanded and vortex formation length decreased as the amplitude of oscillation increases. The rotary oscillation generated small-scale vortex structure just near the cylinder surface.

  • PDF

Free Vibration Analysis of Perforated Steel Plates with Various Cutout Curvatures and Rotations (곡률과 회전을 고려한 유공 강판의 자유진동해석)

  • Woo, Jin-Ho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.61-70
    • /
    • 2010
  • This study presents free vibration analyses of perforates steel plates with various cutouts. Four different parameters (shape, size, curvature radius ratio, and rotation of cutouts) were considered to investigate the effects of those parameters on the free vibration characteristics, such as natural frequencies of the perforated steel plates. Three different shapes of cutouts are circle, square, and triangle, and the considered sizes are 5, 10, 15, 20, and 25 mm. For the triangular and square cutouts, the characteristic radii of the inscribed circles of those cutouts were defined. In addition, the curvature radius ratio was defined as the ratio of curvature radius of bluntness and the characteristic radius. Then, total seven different curvature radius ratios (0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1) were considered. To investigate the rotation effect of the cutouts, it was considered four rotations ($0^{\circ}$, $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$) for the square cutouts and three rotations (0, 15, and 30) for the triangular cutouts. All the free vibration analyses were conducted using a general purpose finite element program. From the analyses we found that the most influential parameter for the free vibration response of the perforated plates is the size of cutout. The other factors such as the shape, curvature radius ratio, and rotation are minors; they mainly change the natural frequency as long as the size effect is accompanied.

Natural Frequency of a Rectangular Plate on Non-homogeneous Elastic Foundations (비균질 탄성 기초위에 놓여있는 직사각형 평판의 고유 진동수)

  • Hwang, Ju-Ik;Kim, Yong-Cheol;Lee, Taek-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.570-570
    • /
    • 1989
  • The natural frequencies of a rectangular plate on non-homogeneous elastic foundations were obtained by using the Ritz method and Galerkin method. The results of both methods using the different type of trial functions were also compared. Furthermore, the effects of the variation of boundary conditions, the stiffness of the foundation spring, the dimension ratio of the plate were investigated. As a result, the Galerkin method can be used to obtain the accurate solution and can be effectively used to design the foundation bed.

Natural Frequency of a Rectangular Plate on Non-homogeneous Elastic Foundations (비균질 탄성 기초위에 놓여있는 직사각형 평판의 고유 진동수)

  • Hwang, Ju-Ik;Kim, Yong-Cheol;Lee, Taek-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.70-76
    • /
    • 1989
  • The natural frequencies of a rectangular plate on non-homogeneous elastic foundations were obtained by using the Ritz method and Galerkin method. The results of both methods using the different type of trial functions were also compared. Furthermore, the effects of the variation of boundary conditions, the stiffness of the foundation spring, the dimension ratio of the plate were investigated. As a result, the Galerkin method can be used to obtain the accurate solution and can be effectively used to design the foundation bed.

  • PDF

Vibration Analysis of Composite Laminated Plates with Increasing Aspect Ratio by Invariant and Correction Factor (형상비 변화에 따른 불변량과 수정계수를 사용한 적층복합판의 진동해석)

  • Park, Je-Sun;Lee, Jung-Ho;Hong, Chang-Woo;Lee, Joo-Hyung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.227-233
    • /
    • 1999
  • Simple equations which can predict "exact" values of the natural frequency of vibration for the special orthotropic laminates are presented. Many laminates with certain orientations have decreasing values of $B_{16}$ and $B_{26}$ as the number of plies increases. Such laminates, with $D_{16}=D_{26}{\rightarrow}0$, including the laminates with anti-symmetric configurations can be solved by the same equation for the special orthotropic laminates. If the quasi-isotropic constants are used, the equations for the isotropic plates can be used. Use of some coefficients cab produce "exact" value for laminates with such configurations. Natural frequencies of the plate with varying aspect ratios is presented.

  • PDF

A Study on the Characteristic of Natural Frequencies of Railway Open Deck Plate Girder Bridges (철도 무도상판형교의 고유진동특성에 대한 연구)

  • 오지택;최진유;김현민
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1041-1046
    • /
    • 2002
  • A railway open deck plate girder bridge without ballast should support relatively heavier vehicle loads compared with its self-weight. For such a reason, actual dynamic response of the bridge is considerably differing with normal prediction because additional masses added from vehicle to a bridge have an effect on the dynamic characteristics of the bridge. These differences affect to the estimation of a natural frequency change that adopted for one of the evaluation technique of strength decrease, and these make trouble to the analysis of a natural frequency from the field test data that measured at the bridge subjected to a running vehicle. In this study, classification of mass participation ratio for each component of open deck plate girder bridge without ballast and the comparison according to the change of vibration characteristics for the case of subjected to a running vehicle were accomplished.

  • PDF

Structural and Dynamic Analysis of Mineral/glass Reinforced Polypropyolene Compound Automotive Engine Cover (Mineral/glass Reinforced Polypropylene Compound 재질 엔진 커버의 구조 및 동적 해석)

  • Kim, Beom-Keun;Kim, Heung-Seob;Kim, Yong-Su;Cho, Gyu-Chul;Jeong, Jae-Kwan
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.63-66
    • /
    • 2007
  • Structural analysis of automotive engine cover under vibration excitation is performed by finite element analysis (FEA) in order to identify the critical area of the structure. Assembly load due to the tightening of the bolts as well as the vibration excitation were considered to describe the actual loading condition. Natural frequencies of the system were extracted considering the damping effect of the structure. Dynamic analysis was performed based on the extracted natural frequency of the system. Experimental modal analysis (EMA) and measurement of strains were performed to verify the results of the analysis. Analysis results correlated closely with the experimental results. Analysis and experiments showed that contribution of the assembly load should not be ignored to predict the structural failure of the engine cover.

Optimal Shape Design of Pyeongyeong Considering Structural and Acoustical Characteristics (구조-음향 특성을 고려한 편경의 최적 형상 설계)

  • Lee, Seungmok;Kang, Minseok;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.337-344
    • /
    • 2014
  • An optimal shape design algorithm is suggested to systematically design a traditional Korean musical instrument, the Pyeongyeong. The Pyeongyeong consists of 16 different chime stones called Gyeongpyeons. The first natural vibration frequency of each Gyeongpyeon must be adjusted to its target frequency, which is determined by the traditional sound tuning method. The second and third natural frequencies must be proportional to the first natural frequency with a specific ratio (1:1.498:2.378). The key idea in our suggested design algorithm is to use the sensitivity of natural frequencies to the variation in the length of each side of a Gyeongpyeon. The dimensions of five different Gyeongpyeons are determined by following the suggested algorithm. Changes in natural frequencies with respect to local thickness variation are closely investigated to compensate for errors that may occur during manufacturing.

Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • In this paper, a new method based on the Sander theory is developed for SWCNTs to predict the vibrational behavior of length and ratio of thickness-to-radius according to various end conditions. The motion equation for this system is developed using Rayleigh-Ritz's method. The proposed model shows the vibration frequencies of armchair (5, 5), (7, 7), (9, 9), zigzag (12, 0), (14, 0), (19, 0) and chiral (8, 3), (10, 2), (14, 5) under different support conditions namely; SS-SS, C-F, C-C, and C-SS. The solutions of frequency equations have been given for different boundary condition, which have been given in several graphs. Several parameters of nanotubes with characteristic frequencies are given and vary continuously in length and ratio of thickness-to-radius. It has been illustrated that an enhancing the length of SWCNTs results in decreasing of the frequency range. It was demonstrated by increasing of the height-to-radius ratio of CNTs, the fundamental natural frequency would increase. Moreover, effects of length and ratio of height-to-radius with different boundary conditions have been investigated in detail. It was found that the fundamental frequencies of C-F are always lower than that of other conditions, respectively. In addition, the existence of boundary conditions has a significant impact on the vibration of SWCNTs. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

  • Meyer, Debbie;Chowdhury, Arindam Gan;Irwin, Peter
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.793-810
    • /
    • 2015
  • Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.