• Title/Summary/Keyword: Natural Frequency Ratio

Search Result 670, Processing Time 0.025 seconds

Buckling and Vibration Analysis of Laminated Composite Plate and Hybrid Composite Plate with a Hole. (원공을 갖는 복합적층판 및 혼합적층판의 좌굴 및 진동해석)

  • 구경민;홍도관;김동영;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.812-815
    • /
    • 2002
  • This paper deals with the buckling and vibration analysis of plate with a hole. We knew that in this paper, as aspect ratio rises in design parameter, the buckling strength and the natural frequency of laminated composite plate decrease and as diameter of hole for width of plate rises, the buckling strength decrease but the natural frequency increase. Also this paper compared the CFRP laminated composit plate with the hybrid composite plate, and proposed that the hybrid composite plate is stronger than the CFRP composite plate.

  • PDF

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM

  • Narwariya, Manoj;Choudhury, Achintya;Sharma, Avadesh K.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.113-132
    • /
    • 2018
  • This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.

Vibration-based damage alarming criteria for wind turbine towers

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.221-236
    • /
    • 2017
  • In this study, the feasibility of vibration-based damage alarming algorithms are numerically evaluated for wind turbine tower structures which are subjected to harmonic force excitation. Firstly, the algorithm of vibration-based damage alarming for the wind turbine tower (WTT) is visited. The natural frequency change, modal assurance criterion (MAC) and frequency-response-ratio assurance criterion (FRRAC) are utilized to recognize changes in dynamic characteristics due to a structural damage. Secondly, a finite element model based on a real wind turbine tower is established in a structural analysis program, Midas FEA. The harmonic force is applied at the rotor level as presence of excitation. Several structural damage scenarios are numerically simulated in segmental joints of the wind turbine model. Finally, the natural frequency change, MAC and FRRAC algorithm are employed to identify the structural damage occurred in the finite element model. The results show that these criteria could be used as promising damage existence indicators for the damage alarming in wind turbine supporting structures.

A Study on the Optimization of the Natural Frequency of a Ring-Stiffened Cylindrical Shell (링 보강 원통셸의 고유진동수 최적화에 관한 연구)

  • Chang, Jin-Geon;Lee, Young-Shin;Yang, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.305-311
    • /
    • 2012
  • For the optimization of the fundamental natural frequency of stiffened cylindrical shells, simulations were performed for cylindrical shells that were stiffened with between one and five ring stiffeners. ANSYS 11.0 was used to simulate the optimization for the natural frequency. The Subproblem Approximation Method was applied as the optimization method. The design function of the optimization was the geometry of the T-shaped ring stiffener, and the constraint function was the maximum additional volume, constrained to a 10% increase. The objective function of the optimization was chosen to maximize the fundamental natural frequency. The performance index for optimal design was defined as the ratio of the natural frequency to the volume of the unstiffened and stiffened shells. The optimal performance index was obtained for the shell stiffened with three rings.

The Effect of Moving Mass on Resonance Phenomenon and Natural Frequency of a Simply Supported Beam (이동질량을 고려한 단순지지된 교량의 진동수 및 공진현상 분석)

  • Min, Dong-Ju;Jung, Myung-Rag;Park, Sung-Min;Kim, Moon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2016
  • The purpose of this study is to investigate the influence of moving mass on the vibration characteristics and the dynamic response of the simply supported beam. The three types of the moving mass(moving load, unsprung mass, and sprung mass) are applied to the vehicle-bridge interaction analysis. The numerical analyses are then conducted to evaluate the effect of the mass, spring and damper properties of the moving mass on natural frequencies and dynamic responses of the simply supported beam. Particularly, in the case of the sprung mass, variations of the natural frequency of simply supported beam are explored depending on the position of the moving mass and the frequency ratio of the moving mass and the beam. Finally the parametric studies on the resonance phenomena are performed with changing mass, spring and damper parameters through the dynamic interaction analyses.

Inelastic Hysteretic Characteristics of Demand Spectrum -Focused on Elasto Perfectly Plastic Model- (요구스펙트럼의 비탄성이력특성 -완전탄소성모델을 중심으로-)

  • 이현호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.367-374
    • /
    • 2000
  • This study investigates the effect of hysteretic characteristics to the Inelastic Demand Spectrum (IDS) which was expressed by an acceleration(Sa) and a displacement response spectrum (Sd). Elasto Perfectly Plastic(EPP) model is used in this study and inelastic demand spectrum (Sa vs, Sd) are obtained from a given target ductility ratio. For a given target ductility ratio IDS can be obtained by using nonlinear time history analysis of single degree of system with forth five recorded earthquake ground motions for stiff soil site. The effect EPP model under demand spectrum is investigated by ductility factor and natural frequency. According to the results obtained in this study IDS has dependency on ductility factor and natural frequency.

  • PDF

Dynamic interaction analysis between actively controlled Maglev and bridge (능동제어되는 자기부상열차와 교량의 동적상호작용해석)

  • Lee, Jun-Seok;Kwon, Soon-Duck;Yu, In-Ho;Kim, Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.555-560
    • /
    • 2008
  • Dynamic interaction analysis between actively controlled Maglev and bridge is carried out. For this, dynamic governing equation for 2-dof Maglev vehicle and optimal feedback control scheme of DOFC are developed. And then the dynamic effect of the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge to the both of air-gap variations of UTM-01 maglev vehicle and bridge center maximum displacement response are investigated. From the results of numerical simulation, it is found that the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge does not affect greatly within design velocity of the vehicle.

  • PDF

Free Vibration Analysis of 4 Edges Clamped, Isotropic Square Plates with 2 Collinear Circular Holes (2개의 원형구멍이 있는 4변고정, 등방성 정사각형 판의 자유진동해석)

  • 이영신;이윤복
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.283-295
    • /
    • 1994
  • This work presents the experimental and finite element analysis results for the free vibration of 4 edges clamped, isotropic square plates with 2 collinear circular holes. Natural frequencies of finite element analysis are obtained for the complete square plate, the square plates with a central circular hole and the square plates with 2 collinear circulare holes. And natural frequencies are experimentally measured for the complete square plate, the square plate with a central circular hole(d = 150 mm) and the square plates with 2 collinear circular holes. Agreement between experimental and FEM results is excellent. Mode shapes in special case are presented. The conclusions of the study are as follows. There is little variation of nondimensional frequency parameters for the first six mode when the aspect ratio of circular hole is less than 1/6 in the isotropic square plates with 2 collinear circular holes. And the first nondimensional frequency parameter doesn't vary as the aspect ratio of circular hole increase.

  • PDF

Free Vibrations of Tapered Beams with Constant Surface Area (일정표면적 변단면 보의 자유진동)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Park, Chang-Eun;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 2011
  • This paper deals with free vibrations of the tapered beams with the constant surface area. The surface area of the objective beams are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear and parabolic ones. Ordinary differential equations governing free vibrations of such beams are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam parameters such as section ratio, surface area ratio, end constraint and taper type are reported in tables and figures. Especially, section ratios of the strongest beam are calculated, under which the maximum frequencies are achieved.

Characteristics of transmission control of an AMT vehicle (AMT 차량의 변속제어 특성에 관한 연구)

  • Kong Jin-Young;Song Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.86-93
    • /
    • 2006
  • This study is concerned with the investigation of characteristics of an AMT (Automated Manual Transmission) which are composed of clutch part and transmission part. When a shilling signal is received from the controller, the clutch is disengaged first, and shifting action including selecting action is followed, and then the clutch is engaged last. The characteristics of transmission shifting response are affected by various parameters of clutch and transmission control elements. Analytical results are in fair agreement with experimental results. It is found that the operating pressure level is the most important for the response of AMT characteristics, and that the other parameters such as natural frequency and damping ratio of the control valve are less important.