• Title/Summary/Keyword: Natural Coordinate

Search Result 172, Processing Time 0.027 seconds

NUI/NUX of the Virtual Monitor Concept using the Concentration Indicator and the User's Physical Features (사용자의 신체적 특징과 뇌파 집중 지수를 이용한 가상 모니터 개념의 NUI/NUX)

  • Jeon, Chang-hyun;Ahn, So-young;Shin, Dong-il;Shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.11-21
    • /
    • 2015
  • As growing interest in Human-Computer Interaction(HCI), research on HCI has been actively conducted. Also with that, research on Natural User Interface/Natural User eXperience(NUI/NUX) that uses user's gesture and voice has been actively conducted. In case of NUI/NUX, it needs recognition algorithm such as gesture recognition or voice recognition. However these recognition algorithms have weakness because their implementation is complex and a lot of time are needed in training because they have to go through steps including preprocessing, normalization, feature extraction. Recently, Kinect is launched by Microsoft as NUI/NUX development tool which attracts people's attention, and studies using Kinect has been conducted. The authors of this paper implemented hand-mouse interface with outstanding intuitiveness using the physical features of a user in a previous study. However, there are weaknesses such as unnatural movement of mouse and low accuracy of mouse functions. In this study, we designed and implemented a hand mouse interface which introduce a new concept called 'Virtual monitor' extracting user's physical features through Kinect in real-time. Virtual monitor means virtual space that can be controlled by hand mouse. It is possible that the coordinate on virtual monitor is accurately mapped onto the coordinate on real monitor. Hand-mouse interface based on virtual monitor concept maintains outstanding intuitiveness that is strength of the previous study and enhance accuracy of mouse functions. Further, we increased accuracy of the interface by recognizing user's unnecessary actions using his concentration indicator from his encephalogram(EEG) data. In order to evaluate intuitiveness and accuracy of the interface, we experimented it for 50 people from 10s to 50s. As the result of intuitiveness experiment, 84% of subjects learned how to use it within 1 minute. Also, as the result of accuracy experiment, accuracy of mouse functions (drag(80.4%), click(80%), double-click(76.7%)) is shown. The intuitiveness and accuracy of the proposed hand-mouse interface is checked through experiment, this is expected to be a good example of the interface for controlling the system by hand in the future.

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

Application of Response Surface Methodology for Optimization of Nature Dye Extraction Process (천연색소 추출공정 최적화를 위한 반응표면분석법의 적용)

  • Lee, Seung Bum;Lee, Won Jae;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.283-288
    • /
    • 2018
  • As the use of environmentally friendly and non-disease natural pigments grows, various methods for extracting natural pigments have been studied. The natural color was extracted from parsley, a vegetable ingredient containing natural dyes. Target color codes of green series of natural dyes extracted as variables #50932C (L = 55.0, a = -40.0, b = 46.0) were set with the pH and temperature of extracted natural color coordinates (of the extracted), and the quantitative intensities of natural dyes were analyzed. During the colorimetric analysis predicted by the reaction surface analysis method, a color coordinate analysis was conducted under the optimal conditions of pH 8.0 and extraction temperature of $60.9^{\circ}C$. Under these conditions, predicted figures of L, a, and b were 55.0, -36.3, and 36.8, respectively, while actual experimental ones confirmed were 69.0, -35.9, and 31.4, respectively. In these results, the theory accuracy and actual error rate were confirmed to be 73.0 and 13.8%, respectively. The theoretical optimization condition of the color difference (${\Delta}E$) was at the pH of 9.2 and extraction temperature of $55.2^{\circ}C$. Under these conditions the predicted ${\Delta}E$ figure was 12.4 while the experimental one was 13.0. The difference in color analysis showed 97.5% of the theoretical accuracy and 4.5% of the actual error rate. However, the combination of color coordinates did not represent a desired target color, but rather close to the targeted color by means of an arithmetic mean. Therefore, it can be said that when the reaction surface analysis method was applied to the natural dye extraction process, the use of color coordinates as a response value can be a better method for optimizing the dye extraction process.

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

Buckling and Vibration Analysis of Antisymmetric Angle-ply laminated Composite Plates using a Three-dimensional Higher-order Theory (3차원 고차이론을 이용한 역대칭 앵글-플라이를 갖는 복합재료 적층판의 좌굴 및 진동해석)

  • Lee, Won Hong;Han, Sung Cheon;Chun, Kyoung Sik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • To obtain a more accurate response from larninated composite structures, the effect of transverse shear deformation, transverse normal strain/stress, and nonlinear variation of in-plane displacements vis-$\\grave{a}$-vis the thickness coordinate should be considered in the analysis. The improved higher-order theory was used to determine the critical buckling load and natural frequencies of laminated composite structures. Solutions of simply supported laminated composite plates and sandwiches were obtained in closed form using Navier's technique, with the results compared with calculated results using the first order and other higher-order theories. Numerical results were presented for fiber-reinforced laminates, which show the effects of ply orientation, number of layers, side-toithickness ratio, and aspects ratio.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

A Numerical Model for Bed Elevation Change and Bed Material Sorting in the Channel of Non-uniform Sediment (혼합사로 구성된 하천에서 하상변동 및 유사의 입도분포 계산을 위한 수치모형 개발)

  • Jang, Chang-Lae;Jung, Kwan-Su;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.387-395
    • /
    • 2004
  • A computer model was proposed to simulate channel changes and bed material sorting of the meandering channels with different grain size in time and space simultaneously. The bed at the outside of the meandering channel with mixed sediments was scoured deeply and composed of coarser materials, and at the inside was aggradated and composed of finer materials. The sorting process started at the upstream inflection point and was finished at the downstream inflection point. At the natural with complicated boundaries and non-uniform grain sizes, the bed near the outside at the bend and narrow width was scoured deeper with coarse materials than in the channel with uniform grain sizes. The point bars showed lip at the inside near the bend and the bed materials were finer The bed at the outside near the bend and in the narrow width was scoured deeply with the coarser materials.

Transient Performance Analysis of the Reactor Pool in KALIMER-600 with an Inertia Moment of a Pump Flywheel (펌프 회전차의 관성모멘트 제공에 의한 KALIMER-600 원자로 풀 과도 성능 분석)

  • Han, Ji-Woong;Eoh, Jae-Hyuk;Lee, Tea-Ho;Kim, Seong-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.418-426
    • /
    • 2009
  • The effect of an inertia moment of a pump flywheel on the thermal-hydraulic behaviors of the KALIMER-600(Korea Advanced LIquid MEtal Reactor) reactor pool during an early-phase of a loss of normal heat sink accident was investigated. The thermal-hydraulic analyses for a steady and a transient state were made by using the COMMIX-1AR/P code. In the present analysis a quarter of the reactor geometry was modeled in a cylindrical coordinate system, which includes a quarter of a reactor core and a UIS, a half of a DHX and a pump and a full IHX. In order to evaluate the effects of an inertia moment of the pump flywheel, a coastdown flow whose flow halving time amounts to 3.69 seconds was supplied to a natural circulation flow in the reactor vessel. Thermal-hydraulic behaviors in the reactor vessel were compared to those without the flywheel equipment. The numerical results showed a good agreement with the design values in a steady state. It was found that the inertia moment contributes to an increase in the circulation flow rate during the first 40 seconds, however to a decrease of it there after. It was also found that the flow stagnant region induced by a core exit overcooling decelerated the flow rate. The appearance of the first-peak temperature was delayed by the flow coastdown during the initial stages after a reactor trip.

Nonlinear Analysis of Improved Degenerated Shell Finite Element (개선된 Degenerated 쉘 유한요소의 비선형 해석)

  • 최창근;유승운
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.113-123
    • /
    • 1990
  • The paper is concerned with the elasto-plastic and geometrically nonlinear analysis of shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem ; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior ; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. In the formulation for plastic deformation, the concept of a layered element model is used and the material is assumed von Mises yield criterion. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements and rotations. The resulting non-linear equilibrium equations are solved by the Netwon-Raphson method combined with load or displacement increment. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

The Study of Asian Ethnic Fashion in Modern Fashion-Focusing on Southeast Asia- (현대복식에 나타난 Asian Ethnic Fashion에 대한 연구-동남아시아 지역 중심으로-)

  • 권기영;유영선
    • Journal of the Korean Society of Costume
    • /
    • v.26
    • /
    • pp.69-85
    • /
    • 1995
  • Recently Southeast Asia has developed, so the world concerns about these regions. Ethnic fashion in 90's is mostly the influence of these regions' folk costume. The purpose of this study is to review aes-thetic aspects of folk costume in Southeast Asia, to investigate the influence on modern fashion and to predict the possibility of Asia fashion's adaption to modern fashion and to help the cre-ation of fashion design. First of all, the folk costume in Southeast Asia is classified drapery style and sarong style. These non-west clothing appeal to modern fashion as the oriental tranditional beauty. Ethnic fashion appeared in 1990's is attempted to be more complex and variable than the pre-vious ethnic fashion. Asian ethnic fashion influenced from folk costume of Southeast Asia is-wholly or party-the style, color, motif from each country's folk costume. And each country's unique art became the motive of the creative design. Specially, Aosai and Quan in Vietnam and sar-ong style in most Southeast Asia are important motives expressing minority's nostalgia. These are expressed in variable ways. Which are harmonized with latest other fashion trend : retro style and naturalism, Layered look, hippie look, unfinished sewing technic and manual technic are used one image matched the folk costume of Southeast Asia which is natural. Another characterstic in Asian ethnic fashion is a multi-ethnic. This harmonizes the different culture between the Orient and the West beyond the age and culture, and combines each folk costume. It is involved that the fashion can develop indivisual country's costumes mixed with her own unique characteristics and the fashion break the traditional concept and disagree with a certain coordinate rule and it indicates that the fashion shows various style, mood, volume and room as well as space. Like this recent Asian ethnic fashion comes to us in a strange favor. The people who are tired of traditional western civilization's outcome will receive a great tastes from the Asian ethnic fashion.

  • PDF