• 제목/요약/키워드: Natural Convection Heat Transfer

검색결과 446건 처리시간 0.028초

사각 물체가 존재하는 밀폐계의 종횡비 변화에 따른 내부 자연대류 현상에 대한 수치적 연구 (Numerical Simulation of the Natural Convection in Horizontal Enclosure of Different Aspect Ratio with an Array of Square Cylinder)

  • 이재룡;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.109-114
    • /
    • 2003
  • The physical model considered here is a horizontal layer of fluid heated below and cooled above with a periodic array of evenly spaced square cylinders placed at the center of the layer, whose aspect ratio here varies from unity to twelve. Periodic boundary condition is employed along the horizontal direction to allow for lateral freedom for the convection cells. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral multi-domain methodology for a given Rayleigh numbers of $10^{6}$.

  • PDF

비가열부가 있는 평판에서의 혼합대류에 관한 연구 (A Study of Mixed Convection on a Flat Plate with an Unheated Starting Length)

  • 김민수;강영규;백병준;박복춘
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1304-1312
    • /
    • 1993
  • 본 연구는 열 발생 장치 형상이 다양화 되고 이들 장비들이 설치위치에 따라 수직 이나 수평 또는 경사진 경우를 고려하여 수직으로 부터 경사각도를 증가 시키면 서 부력의 영향에 따른 혼합대류 유동의 온도분포, 속도분포와 국소 Nusselt수, 국소 마찰계수, 열유속및 열전달계수 등의 값을 수치해석적으로 구하여, 쉴리렌 간섭계를 사용하여 실험적으로 구한 열유속, 열전달계수 값과 비교하여 비가열부의 영향을 검토하고자 한다.

복사 열전달을 고려한 자연대류 원형 히트싱크 열전달 해석 (Thermal Analysis of a Radial Heat Sink with Radiation and Natural Convection)

  • 유승환;장대석;이관수
    • 대한기계학회논문집B
    • /
    • 제36권4호
    • /
    • pp.385-390
    • /
    • 2012
  • 본 연구는 LED 조명기구에 적합한 원형 히트싱크의 최적설계를 수행하였다. DTRM 복사 모델을 이용하여 자연대류와 복사 열전달을 수치적으로 해석하였고, 수치모델을 실험을 통하여 검증하였다. 휜 개수, 긴 휜 길이, 중간 휜 길이가 전체 열저항 및 복사 열전달에 미치는 영향을 조사하였고, 그 결과 방사율이 증가할수록 복사 열전달의 크기는 증가하여 열저항은 감소하지만, 인자 변화에 따른 전체 열저항의 경향성은 거의 일정하였다. 원형 히크싱크의 최적화를 수행하였고, 최적화된 긴 휜의 개수는 19~28 개, 긴 휜의 길이는 히트 싱크의 반지름의 1/2 이고, 휜의 길이 비는 0.4~0.7 사이의 값을 얻었다.

PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구 (A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm)

  • 최영기;정진영
    • 설비공학논문집
    • /
    • 제2권1호
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

액체과냉도가 하부폐쇄 수직환상공간 내부의 풀비등 열전달에 미치는 영향 (Effect of Liquid Subcooling on Pool Boiling Heat Transfer in Vertical Annuli with Closed Bottoms)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.239-246
    • /
    • 2005
  • Effects of subcooling on pool boiling heat transfer in vertical annuli with closed bottoms have been investigated experimentally. For the test, a tube of 19.1mm diameter and the water at atmospheric pressure have been used. Three annular gaps of 7.05, 18.15, and 28.20 have been tested in the subcooled water and results of the annuli are compared with the data of a single unrestricted tube. The increase in pool subcooling results in much change in heat transfer coefficients. At highly subcooled regions, heat transfer coefficients for the annuli are much larger than those of a single tube. As the heat flux increases and subcooling decrease, a deterioration of heat transfer coefficients is observed at the annulus of 7.05mm gap. Single-phase natural convection and liquid agitation are the governing mechanisms for the single tube while liquid agitation and bubble coalescence are the major factors at the bottom closed annuli.

최대밀도점 부근의 물 속에 잠겨있는 수직 등온 강선에 의한 자연대류 (Free Convection due to Vertical Isothermal Wires Immersed in Water near its Density Extremum)

  • 엄용균;유갑종
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.338-350
    • /
    • 1996
  • A numerical analysis is carried out to study the two-dimensional steady state natural convection from vertical wires immersed in cold pure water. The surface of the wire is $0^{\circ}C$ unifrom temperature. Results of the analysis are presented for free stream temperature from $0^{\circ}C$ to $25^{\circ}C$ and the aspect ratio N from $5.26{\times}10^{-3}$ to $1.0{\times}10^{-3}$. The effects of the density extremum and aspect ratio on the flow pattern and the heat transfer characteristics are discussed As the aspect ratio N becomes larger, in the range of $1.0^{\circ}C{\leq}T_{\infty}{\leq}4.4^{\circ}C$ and $6{^{\circ}C}{\leq}T_{\infty}{\leq}17^{\circ}C$, the effect of Pr number on the heat transfer is shown to be more significant than the aspect ratio. Investigating into the effect of the density extremum on the heat transfer from wires, the new heat transfer correlations are suggested with the relation of average Nu mumber vs. modified Ra number. Here, the coefficient values C of correlations are presented as the function of density extremum parameter $R^*$. The effects of the density extremum parameter are also discussed.

  • PDF

상부가 개방된 수직 캐비티내에 장착된 불연속 균일 발열체의 자연대류 냉각 (Natural convection cooling of discrete heaters with same heat generation in a vertical open top cavity)

  • 유갑종;추홍록;김병하;최병철
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 1997
  • Natural convection cooling of discrete heaters located in a two-dimensional vertical open top cavity is investigated experimentally. The five discrete heaters with same heat generation are located on the wall of the cavity. The heaters are arranged in two configurations; flush-mounted on a vertical wall and protruding from the wall about 4.5 mm. The materials used for the vertical walls are copper and epoxy-resin, and air is used as the cooling fluid. The temperature and flow fields in the cavity were visualized by means of Mach-Zehnder interferometer and smoke-method. Also, local temperature measurements are made along the vertical wall. Results are obtained for cavity aspect ratios of 4.6, 7.5 and 9.5 and modified Rayleigh numbers ranging from 10$^{3}$ to 10$^{6}$ . Results indicate that the cooling efficiency for the copper wall is superior to that of the epoxy-resin. For the epoxy-resin wall, the protrusion of the heaters plays a role in decreasing the heat transfer performance. The location of maximum temperature is significantly influenced by the wall materials and heater configurations. Correlations relating the Nusselt number to the modified Rayleigh number are proposed.

상변화물질을 이용한 축열조에서 열전달현상에 관한 연구 - 수직원통관 내에서 응고 열전달 - (A study of heat transfer with Phase Change Material in heat storage system - Inward freezing in the vertical cylinder -)

  • 이채문;임장순
    • 태양에너지
    • /
    • 제13권2_3호
    • /
    • pp.53-64
    • /
    • 1993
  • 본 연구는 용융된 파라핀을 채운 수직원관 내의 상변화물질의 초기온도와 수직원관의 벽면온도를 변화시켰을때 관 내에서 일어나는 열전달현상을 다루었다. 자연대류의 효과는 초기과열된 액상영역 내에서 응고초기 짧은 시간에 걸쳐 일어났고, 그 후 전도열전달이 paraffin 전 영역을 지배하였다. 실험에서 관찰한 응고 형태는 상부표면에서 밀도 증가에 의한 수축공간이 발생하였으며, 그 공간의 크기는 냉각이 진행됨에 따라 증가하였다. 자연대류가 끝나자. 상경계면 상에서 수지상 결정과 mush-zone이 발견되었다. 액상 paraffin의 초기과열은 실험 전반부의 응고질량과 응고두께를 감소시키는 경향을 보였으며, 초기액상과열도와 벽면 과냉도가 큰 경우에 크게 나타났다.

  • PDF

Two Dimensional Analysis for the External Vessel Cooling Experiment

  • Yoon, Ho-Jun;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.410-423
    • /
    • 2000
  • A two-dimensional numerical model is developed and applied to the LAVA-EXV tests performed at the Korea Atomic Energy Research Institute (KAERI) to investigate the external cooling effect on the thermal margin to failure of a reactor pressure vessel (RPV) during a severe accident. The computational program was written to predict the temperature profile of a two-dimensional spherical vessel segment accounting for the conjugate heat transfer mechanisms of conduction through the debris and the vessel, natural convection within the molten debris pool, and the possible ablation of the vessel wall in contact with the high temperature melt. Results of the sensitivity analysis and comparison with the LAVA-EXV test data indicated that the developed computational tool carries a high potential for simulating the thermal behavior of the RPV during a core melt relocation accident. It is concluded that the main factors affecting the RPV failure are the natural convection within the debris pool and the ablation of the metal vessel, The simplistic natural convection model adopted in the computational program partly made up for the absence of the mechanistic momentum consideration in this study. Uncertainties in the prediction will be reduced when the natural convection and ablation phenomena are more rigorously dealt with in the code, and if more accurate initial and time-dependent conditions are supplied from the test in terms of material composition and its associated thermophysical properties.

  • PDF

Natural Convection Heat Transfer Characteristics of the Molten Metal Pool with Solidification by Boiling Coolant

  • Cho, Jae-Seon;Suh, Kune-Yull;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.719-725
    • /
    • 1997
  • This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232$^{\circ}C$. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation beかeon the Nusselt number and the Rayleigh number in the molten metal Pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer.

  • PDF