• Title/Summary/Keyword: Natural Convection Heat Transfer

Search Result 446, Processing Time 0.027 seconds

Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability (투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성)

  • 지명국;배강렬;정효민;정한식;추미선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

An Experimental Study on the Natural Convection from the Isothermal Square Beam with an Adiabatic Wall (단열벽(斷熱壁)에 부착(附着)된 등온사각(等溫四角)비임에서의 자연대류(自然對流) 열전달(熱傳達))

  • Lee, C.J.;Park, J.L.;Kwon, S.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.1
    • /
    • pp.65-73
    • /
    • 1988
  • Steady laminar natural convection heat transfer from an isothermal square beam with adiabatic wall has been studied for various inclination angles of the wall and Rayleigh numbers by using Mach-Zehnder Interferometer in air. The different temperature and fluid fields were obtained as the inclination angle changes showing the effects of the ascending heated fluid and the adiabatic wall. The maximum total mean Nusselt number was found at ${\theta}=45^{\circ}$.

  • PDF

Natural Convection in the Annulus between Concentric Inclined Cylinders (경사진 동심원통 사이의 환상공간에서 자연대류 열전달)

  • Kim, Chan-Won;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 1987
  • Natural convection in the annulus between concentric inclined cylinders has been studied by the numerical analysis. Governing equations are numerically solved by means of successive over-relaxation methods for a range in orientation from horizontal to vertical. It is found that flow patterns can also be observed the co-axial double spiral. As the angle of inclination is increased, the center of the eddy is shifted into the lower part of annulus and flow structure is apparently changed. In the present study, the maximum local Nusselt numbers for the inner and outer walls at the vertical cylinder increase more than those at the horizontal cylinder by 71%, 42% respectively. Consequently the effect of inclination on the heat transfer is considerably large.

  • PDF

Numerical Analysis of Heat Transfer of a Printed Circuit Boards for Safety Design of Electronic Equipment at Each Design Stage (전자장비 안전설계를 위한 PCB의 설계단계별 열전달 해석)

  • 김재홍;김종일
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 1998
  • The natural convection cooling of simulated electronic chips located on a printed circuit board(PCB) has been studied by Computer Aided Engineering(CAE). In CAE, 3-dimensional finite element model of simulated electronic chip was made to accomplish heat transfer analysis at each design stage of a printed circuit boards for thermal optimization. The simulated electronic chips are installed protrudent from the plate about 3mm. The materials the plates are epoxy and aluminum. The results show that the chip with relatively high heat generation rates should not be close to each other. It is found, as well that cooling effect for the aluminum plate is superior to the epoxy plate and location of maximum temperature is significantly influenced by the structure variation of PCB. In developing PCB and electronic chips, it's recommended that CAE is very useful to estimate to the distribution of temperature.

  • PDF

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Assessment of CUPID code used for condensation heat transfer analysis under steam-air mixture conditions

  • Ji-Hwan Hwang;Jungjin Bang;Dong-Wook Jerng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1400-1409
    • /
    • 2023
  • In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.

Heat Transfer Characteristics for Inward Melting in a Horizontal Cylinder (수평원통관 내에서 용융이 일어날 때의 열전달특성)

  • Yum, Sung-Bae;Hong, Chang-Shik
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.44-58
    • /
    • 1990
  • Heat transfer characteristics of heat storing processes in paraffin-filled horizontal circular cylinder is studied. The unmelted solid paraffin is allowed to fall on the bottom wall under gravity. In the upper liquid phase, natural convection is considered to take place while in the lower liquid film between the solid paraffin and the wall conduction is thought to take place instead. Experimental analyses are also carried out. The amount of the latent heat stored is obtained by recording the time wisely changing side area of the solid paraffin photographically. The mass of paraffin melted in the upper section is obtained by substracting the amount of melted mass in the lower section from the total mass melted and therefrom variation of heat transfer rate in each section is studied.

  • PDF

A Study of Heat Storage System with Phase Change Material - Inward Melting and Solidification in a Horizontal Cylinder - (상변화물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내에서의 내향용융 및 응고열전달 실험 -)

  • Kim, I.G.;Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.319-329
    • /
    • 1989
  • Heat transfer phenomena during inward melting and solidification process of the phase change material were studied expertimentally. The phase change medium was 99% pure n-docosane paraffin ($C_{22}H_{46}$). The solid-liquid interface motion during phase change was recorded photographically. Measurements were made on the temperature, the solid-liquid interface, the melted or frozen mass and the various energy components stored or extracted from the cylinder wall. For melting, the experimental results reaffirmed the dominant role played by the conduction at an early stage, by the natural convection at longer time. For solidification, natural convection effects in the superheated liquid were modest and were confined to short freezing time. Although the latent energy is the largest contributor to the total stored or extracted energy, the aggregate sensible energies can make a significant contribution, especially at large cylinder wall superheating or subcooling, large initial phase change material subcooling or superheating.

  • PDF

Numerical Study on the Three-Dimensional Natural Convection Cooling of Periodically Fully Developed PCB Channel (주기적으로 완전발달된 PCB 채널의 3차원 층류 자연대류 냉각에 관한 수치적 연구)

  • 이관수;백창인;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2751-2761
    • /
    • 1994
  • A numerical investigation on the three-dimensional laminar natural convection heat transfer in the periodically fully developed PCB channel has been performed. When heat generating blocks mounted on the adiabatic wall make a channel with their facing shrouding wall, the flow inside the channel becomes periodically fully developed. A single module in the periodically fully developed region is chosen for computational domain in order to save computer storage and computational time. The periodic boundary condition is applied in the anlaysis. The effects of the parameters such as the Rayleigh number, the number of the modules, and the height of channel are examined to obtain the optimum condition for the enhancement of the cooling effectiveness. The result shows that the cooling effect is improved with increasing Rayleigh number and channel height, and decreasing the number of the module. The result also indicates that increasing the height of the channel and number of the module is recommended for a limited space.