• Title/Summary/Keyword: Natural Boundary Conditions

Search Result 629, Processing Time 0.028 seconds

Free Vibrations of Tapered Beams with General Boundary Conditions and Tip Masses (끝단 질량과 일반적인 단부조건을 갖는 변단면 보의 자유진동)

  • 오상진;이병구;박광규;이종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.802-807
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and tip masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters: the translational spring parameter, the rotational spring parameter, the mass ratio and the dimensionless mass moment of inertia.

  • PDF

Free Vibration Analysis of Helical Springs (헬리컬 스프링의 자유진동 해석)

  • 김월태;정명조;김현수;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.977-983
    • /
    • 2003
  • Free vibration analysis of helical springs was performed by the use of the commercial finite element analysis program, ANSYS. The investigation of national frequency was focused on the effect of various parameters such as boundary conditions, spring indices, number of coil turns and helix angles which are considered to affect the free vibration of a spring. The finite element method was validated by comparison with the result of a previouosly published literature. The similarity of frequency trend was shown among three boundary conditions: clamped-clamped, free-free, simpliy supported-simply supported but there was no similarity in light of mode shapes among them. Several modes showed similar frequencies on and near the frequencies identified by the natural frequency formula of Wahl. Natural frequencies increased with spring indices and number of turns decreasing and with helix angles increasing. The results investigated by finiete element method were compared with the experemental result and theoretical result and showed a good agreement among them.

  • PDF

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S.;Polyzos, D.;Beskos, D.E.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.705-716
    • /
    • 2003
  • Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

Dynamic stiffness matrix of an axially loaded slenderdouble-beam element

  • Jun, Li;Hongxing, Hua;Xiaobin, Li
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.717-733
    • /
    • 2010
  • The dynamic stiffness matrix is formulated for an axially loaded slender double-beam element in which both beams are homogeneous, prismatic and of the same length by directly solving the governing differential equations of motion of the double-beam element. The Bernoulli-Euler beam theory is used to define the dynamic behaviors of the beams and the effects of the mass of springs and axial force are taken into account in the formulation. The dynamic stiffness method is used for calculation of the exact natural frequencies and mode shapes of the double-beam systems. Numerical results are given for a particular example of axially loaded double-beam system under a variety of boundary conditions, and the exact numerical solutions are shown for the natural frequencies and normal mode shapes. The effects of the axial force and boundary conditions are extensively discussed.

Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • Shin Changho;Chung Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

A Free Vibration Analysis of Sound-Structure Interaction Plate (구조-음향 연성평판의 자유진동해석)

  • Lee, Dong-Ick;O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2546-2554
    • /
    • 1996
  • In order to investigate the characteristics of sound-structure interaction problems, we modeled a rectangular cavity and the flexible wall of the cavity. Because the governing equations of motion are coupled through velocity terms, we could redefine them using the velocity potential. We calculated the natural frequencies of plate using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz Method. As the result, comparisons of theory and experiment show good agreement. and using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz method show useful method for sound-structure interaction problems too.

Development of Vibrational Analysis Algorithm for Truncated Conical Shells (끝이 잘린 원추형 셸의 진동해석 알고리즘의 개발)

  • Yeo, D.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.58-65
    • /
    • 2005
  • This paper deals with the free vibrations of truncated conical shell with uniform thickness by the transfer influence coefficient method. The classical thin shell theory based upon the $Fl\ddot{u}gge$ theory is assumed and the governing equations of a conical shell are written as a coupled set of first order differential equations using the transfer matrix. The Runge-Kutta-Gill integration and bisection method are used to solve the governing differential equations and to compute the eigenvalues respectively. The natural frequencies and corresponding mode shapes are calculated numerically for the truncated conical shell with any combination of boundary conditions at the edges. And all boundary conditions and the intermediate supports between conical shell and foundation could be treated only by adequately varying the values of the spring constants. Numerical results are compared with existing exact and numerical solutions of other methods.

  • PDF

Correlation between frequency and Poisson's ratio: Study of durability of armchair SWCNTs

  • Muzamal Hussain;Mohamed A. Khadimallah;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.303-311
    • /
    • 2023
  • An analysis of the Poisson's ratios influence of single walled carbon nanotubes (SWCNTs) based on Sander's shell theory is carried out. The effect of Poisson's ratio, boundary conditions and different armchairs SWCNTs is discussed and studied. The Galerkin's method is applied to get the eigen values in matrix form. The obtained results shows that, the decrease in ratios of Poisson, the frequency increases. Poisson's ratio directly measures the deformation in the material. A high Poisson's ratio denotes that the material exhibits large elastic deformation. Due to these deformation frequencies of carbon nanotubes increases. The frequency value increases with the increase of indices of single walled carbon nanotubes. The prescribe boundary conditions used are simply supported and clamped simply supported. The Timoshenko beam model is used to compare the results. The present method should serve as bench mark results for agreeing the results of other models, with slightly different value of the natural frequencies.

Simulating the performance of the reinforced concrete beam using artificial intelligence

  • Yong Cao;Ruizhe Qiu;Wei Qi
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.269-286
    • /
    • 2023
  • In the present study, we aim to utilize the numerical solution frequency results of functionally graded beam under thermal and dynamic loadings to train and test an artificial neural network. In this regard, shear deformable functionally-graded beam structure is considered for obtaining the natural frequency in different conditions of boundary and material grading indices. In this regard, both analytical and numerical solutions based on Navier's approach and differential quadrature method are presented to obtain effects of different parameters on the natural frequency of the structure. Further, the numerical results are utilized to train an artificial neural network (ANN) using AdaGrad optimization algorithm. Finally, the results of the ANN and other solution procedure are presented and comprehensive parametric study is presented to observe effects of geometrical, material and boundary conditions of the free oscillation frequency of the functionally graded beam structure.

Optimal layout of a partially treated laminated composite magnetorheological fluid sandwich plate

  • Manoharan, R.;Vasudevan, R.;Jeevanantham, A.K.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1023-1047
    • /
    • 2015
  • In this study, the optimal location of the MR fluid segments in a partially treated laminated composite sandwich plate has been identified to maximize the natural frequencies and the loss factors. The finite element formulation is used to derive the governing differential equations of motion for a partially treated laminated composite sandwich plate embedded with MR fluid and rubber material as the core layer and laminated composite plate as the face layers. An optimization problem is formulated and solved by combining finite element analysis (FEA) and genetic algorithm (GA) to obtain the optimal locations to yield maximum natural frequency and loss factor corresponding to first five modes of flexural vibration of the sandwich plate with various combinations of weighting factors under various boundary conditions. The proposed methodology is validated by comparing the natural frequencies evaluated at optimal locations of MR fluid pockets identified through GA coupled with FEA and the experimental measurements. The converged results suggest that the optimal location of MR fluid pockets is strongly influenced not only by the boundary conditions and modes of vibrations but also by the objectives of maximization of natural frequency and loss factors either individually or combined. The optimal layout could be useful to apply the MR fluid pockets at critical components of large structure to realize more efficient and compact vibration control mechanism with variable damping.