• 제목/요약/키워드: Natural Aggregate

검색결과 534건 처리시간 0.021초

고강도영역 재생골재 콘크리트의 현장적용을 위한 실험적 연구 -제2보 경화콘크리트 의 성상을 중심으로- (An Experimental Study on the Application of Recycled Aggregate Concrete Using the Demolished High Strength Concrete -Part 2, In the case of hardened concrete-)

  • 김규용;최희용;최민수;김진만;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.256-261
    • /
    • 1995
  • Large-scaling recycling of demolished concrete will concrete will contribute not only to the solution of a growing waste disposal problem, it will also help to consweve natural resoures of sand and gravel and to secure future supply of reasonly priced aggregates for building and other construction purposes within large urban areas. Because recycled aggregate particles consits of substantial amount of relatively soft cement paste component, it is less resistant to mechanical actions. With this view in mind, to obtain a reference data for the development of recycling system and to a basic data the guiedline of recycled aggregate concrete construction and engineering properties of recycled aggregate concrete according to the factors, such as blending ratio of recyced aggregete with the natural aggregate, addition to the factors, such as blending ratio of recycled aggregete with the natural aggregate, addition of flyash, water coment ratio.

  • PDF

트립토판 합성효소 α 소단위체의 다양한 단백질 덩어리 형성 (Various Aggregate Forms of Tryptophan Synthase α-Subunit)

  • 박명원;임운기
    • 생명과학회지
    • /
    • 제23권2호
    • /
    • pp.319-323
    • /
    • 2013
  • 단백질 덩어리는 질환의 원인이 되기도 하고, 유용한 유전자 재조합 단백질의 생산시 문제를 야기하기도 한다. 본 연구에서는 조건을 달리함으로 트립토판 합성효소 ${\alpha}$ 소단위체로부터 적어도 3가지 이상 다른 종류의 덩어리가 생길 수 있음을 보여주고 있다; (1) 불투명 흰색 침전 가능한 덩어리 (2) 투명하고 겔 유형의 침전 가능한 덩어리 (3) 불침전 덩어리. 이런 다른 종류의 덩어리 형태는 다른 기작을 통해 일어날 것으로 추정된다.

순환골재와 천연제올라이트 피복에 의한 연안퇴적물 오염물질 용출 차단 효과 (Effects of Capping with Recycled Aggregates and Natural Zeolite on Inhibition of Contaminants Release from Marine Sediment)

  • 김영기;신우석
    • 한국물환경학회지
    • /
    • 제32권6호
    • /
    • pp.546-551
    • /
    • 2016
  • In this study, capping with recycled aggregate and natural zeolite in marine sediment was performed to investigate its inhibitory effect on pollutants released from sediment to seawater. An experiment was performed by capping with amendments for 60 days, and concentrations of organic matter (COD), nitrate, phosphate and metallic elements (Ni, Zn, Cu, Pb, Cd, As, and Cr) were measured. Two capping materials effectively suppressed pollutant release. Recycled aggregate showed better effectiveness for organic pollutant, nitrate and phosphate release. Meanwhile, natural zeolite was effective for metallic elements. As a result, recycled aggregate and natural zeolite can be considered as cost-effective/inexpensive capping material candidates. Also, the capping material can be selected according to the target pollutant.

현장재생골재를 사용한 포장용 콘크리트의 기본 물성실험 (Evaluation of Concrete Material Properties for Pavement Using Job-site Processed Recycled Aggregates)

  • 양성철;김남호
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.57-63
    • /
    • 2013
  • PURPOSES : This study was performed to investigate a feasibility of job-site use of recycled concrete aggregate exceeding 3% of absorption rate. Test variables are coarse aggregate types such as natural aggregate, job-site processed recycled aggregate, and recycled aggregate processed from the intermediate waste treatment company. METHODS : First, aggregate properties such as gradation, specific gravity and absorption rate were determined. Next a basic series of mechanical properties of concrete was tested. RESULTS : All strength test results such as compression, flexure and modulus were satisfied for the minimum requirements. Finally up to first 48 elapsed days the shrinkage strains of concretes made from both recycled aggregates (in case of volume-surface ratio of 300) appeared to be greater than 26% of the companion concretes made from natural aggregates. CONCLUSIONS : Drying shrinkage result is ascribed to greater absorption rate and specific gravity of those specimens made from recycled aggregate. This may be reduced with an addition of admixtures.

Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures

  • Nematzadeh, Mahdi;Baradaran-Nasiria, Ardalan
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.19-35
    • /
    • 2019
  • In this paper, the effect of the type and amount of fibers on the physicomechanical properties of concrete containing fine recycled refractory brick (RRB) and natural aggregate subjected to elevated temperatures was investigated. For this purpose, forta-ferro (FF), polypropylene (PP), and polyvinyl alcohol (PVA) fibers with the volume fractions of 0, 0.25, and 0.5%, as well as steel fibers with the volume fractions of 0, 0.75, and 1.5% were used in the concrete containing RRB fine aggregate replacing natural sand by 0 and 100%. In total, 162 concrete specimens from 18 different mix designs were prepared and tested in the temperature groups of 23, 400, and $800^{\circ}C$. After experiencing heat, the concrete properties including the compressive strength, ultrasonic pulse velocity (UPV), weight loss, and surface appearance were evaluated and compared with the corresponding results of the reference (unheated) specimens. The results show that using RRB fine aggregate replacing natural fine aggregate by 100% led to an increase in the concrete compressive strength in almost all the mixes, and only in the PVA-containing mixes a decrease in strength was observed. Furthermore, UPV values at $800^{\circ}C$ for all the concrete mixes containing RRB fine aggregate were above those of the natural aggregate concrete specimens. Finally, regarding the compressive strength and UPV results, steel fibers demonstrated a better performance relative to other fiber types.

플라이애쉬를 혼입한 재생골재의 시공성 및 공학적 특성에 관한 실험적 연구 -제 1보 아직 굳지않은 콘크리트의 성상을 중심으로- (An Experimental Study on the Workability and Engineering Properties of Recycled Aggregate Concrete Mixed Fly ash. - Part 1. In the case of fresh concrete -)

  • 남상일;김진만;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.254-259
    • /
    • 1994
  • Recycling of waste concrete will contribute not only to the solution of a growing waste disposal problem, also help to conserve natural resources of aggregate and to secure future supply of reasonably priced aggregates for building construction purpose within large urban areas. But there recycled aggregates are more porous and less resistant to mechanical actions. In comparison with natural aggrete concrete, recycled aggregate concrete shows reductions in strength and other engineering properties. And it may also be less durable due to increase in porosity and permeability. Economical ways of improving the quality of recycled aggregate concrete are: (1)by reducing the water-cement ratio; (2)by reducing the water content using a superplasticizer without affecting the workability; (3)addition of pozzolan, such as fly ash; and (4)blending of recycled aggregate with the natural aggretes.

  • PDF

재생골재를 사용한 콘크리트의 내동해성 (Resistance to Freezing and Thawing on Concrete with Recycled Aggregate)

  • 문대중;문한영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.85-88
    • /
    • 2001
  • Utilization of demolished-concrete as recycled aggregate has been researched for the purpose of substituing for insufficient natural aggregate, saving resources and protecting environment. There, however, are some problems that qualities of recycled aggregates are not only largely diverse, but also mechanical properties of recycled aggregate concrete decrease a little in comparison with those of natural aggregate concrete. In this study, the resistance to freezing and thawing of recycled aggregate concrete was highly different due to adhered mortar on recycled aggregate, and durability factor of concrete with NA SRA and DRA was decreased more than that of control concrete. However, durability factor of concrete with AA SRA was larger than that of control concrete.

  • PDF

Experimental investigation on hardened properties of recycled coarse aggregate concrete

  • Shohana, Shanjida A.;Hoque, Md. I.;Sobuz, Md. H.R.
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.369-379
    • /
    • 2020
  • Reduction of disposal of waste materials due to construction demolition has become a great concern in recent decades. The research work presents the hardened properties of concrete where the partial substitution of recycled coarse aggregate with natural aggregate in amount of 0%, 10%, 30% and 50%. By using different mixed proportions, fresh and hardened properties of concrete were conducted for this investigation. These properties were compared with control concrete. It can be seen that all of the hardened properties of concrete were decreased with the increasing percentage of recycled aggregate in concrete mixes. It was noticed that up to 30% recycled aggregate replacement can be yielded the optimum strength when it used in normal concrete. Finally, it can be said that disposed recycled concrete utilizing as a partial replacement in natural aggregate is a great way to reuse and reduce environmental hazards which achieve sustainability approach in the construction industry.

재활용플랜트에서 생산되는 재생골재의 품질현황에 관한 기초적 연구 (A Fundamental Study on the Quality of Recycled Aggregate Produced in Recycling Plant)

  • 강희관;박선규;신호철;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.33-38
    • /
    • 1997
  • The reuse of waste concrete amy settle the problems of environmental pollution and critical shortage of good natural aggregate. But recycled aggregate particles consist of substantial amount of relatively soft cement paste component. These aggregates are more porous, and les resistant to mechanical actions than natural aggregate. And the source of supply for manufacturing recycled aggregate is generally composed of different types of original aggregate and strengths of original mortar. The properties of recycled aggregate exhibit a considerable variation due to the properties of original concrete. This paper is an experimental study on the fundamental properties of recycled aggregates sampled from processing plant in the suburbs of TaeJeon.

  • PDF

하수차집관로 준설토양의 콘크리트골재 적용성 평가에 관한 연구 (Feasibility Study on the Use of Dredged Soil from Sewage Pipes as a Concrete Material)

  • 김준하;김형욱;김인식;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권2호
    • /
    • pp.10-16
    • /
    • 2017
  • Recently, the gap between demand and supply of natural aggregate has increased owing to the depletion of aggregate sources. Therefore, policy support is necessary for the stable supply of aggregate resources. Public and construction works experience problems when they do not receive a steady supply of aggregate. Further, instabilities in aggregate supply lead to increases in aggregate prices, and consequently construction costs. As a result, the likelihood of poor construction using low-grade aggregate increases. It is therefore crucial to put measures in place that deal with these issues. This study aims to reduce the load imposed by aggregate use on the environment by recycling soil dredged from sewage ducts to reduce the gap between supply and demand of fine aggregate. The dredged soil is assessed using an applicability test for quality characteristics and solidification with basic properties. This study aims to secure the safety of dredging soil and solidified objects through interior physical and chemical analyses and to utilize it as a base material for concrete solidification in the future.