• Title/Summary/Keyword: Natronomonas pharaonis

Search Result 1, Processing Time 0.015 seconds

Optical Characterization of Sensory Rhodopsin II Thin Films using a Near-field Scanning Microwave Microscope (근접장 마이크로파 현미경을 이용한 로돕신의 광학적 특성 연구)

  • Yu, Kyung-Son;Kim, Song-Hui;Yoon, Young-Woon;Lee, Kie-Jin;Lee, Jung-Ha;Choi, Ah-Reum;Jung, Kwang-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • We report the electro-optical properties of the sensory rhodopsin II using a near-field scanning microwave microscope(NSMM). Rhodopsin was known as a photoreceptor pigment with a retinal as a chromophore via a protonated Schiff base and consists of seven ${\alpha}-helical$ transmembrane segments. The sensory rhodopsin II, expressing E. coli UT5600 with endogenous retinal biosynthesis system and purified with $Ni^{-2}-NTA$ affinity chromatography in the presence of 0.02 % DM (Dodecyl Maltoside) from Natronomonas pharaonis. We measured the absorption spectra and the transients difference of sensory rhodopsin II from Natronomonas pharaonis using a UV/VIS spectrophotometer with Nd-Yag Laser (532 nm). The absorption spectra of NpSR II showed a typical rhodopsin spectrum with a left shoulder region and the photointermediates spectra of NpSR II-ground state (${\lambda}max=498\;nm$), NpSR II-M state (${\lambda}max=390\;nm$), and NpSR II-O state (${\lambda}max=550\;nm$) during the photocycle. The observed photocycle reaction was confirmed by measuring the microwave reflection coefficient $S_{11}$ at an operating frequency of f=3.93-3.95 GHz and compared with the results of a photocycle of NpSR II.