• Title/Summary/Keyword: Native Oxide

Search Result 145, Processing Time 0.028 seconds

III-V 화합물 반도체 Interface Passivation Layer의 원자층 식각에 관한 연구

  • Gang, Seung-Hyeon;Min, Gyeong-Seok;Kim, Jong-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.198-198
    • /
    • 2013
  • Metal-Oxide-Semiconductor (MOS)에서 사용되는 다양한 channel materials로 high electron mobility을 가지는 III-V compound semiconductor가 대두되고 있다 [1,2]. 하지만 이러한 III-V compound semiconductor는 Si에 비해 안정적인 native oxide가 부족하기 때문에 Si, Ge, Al2O3과 BeO 등과 같은 다양한 물질들의 interface passivation layers (IPLs)에 대한 연구가 많이 되고 있다. 이러한 IPLs 물질은 0.5~1.0 nm의 매우 얇은 physical thickness를 가지고 있고 또한 chemical inert하기 때문에 플라즈마 식각에 대한 연구가 되고 있지만 IPLs 식각 후 기판인 III-V compound semiconductor에 physical damage과 substrate recess를 줄이기 위해서 높은 선택비가 필요하다. 이러한 식각의 대안으로 원자층 식각이 연구되고 있으며 이러한 원자층 식각은 반응성 있는 BCl3의 adsorption과 low energy의 Ar bombardment로 desorption으로 self-limited한 one monolayer 식각을 가능하게 한다. 그러므로 본 연구에서는, III-V compound semiconductor 위에 IPLs의 adsorption과 desorption의 cyclic process를 이용한 원자층식각으로 다양한 물질인 SiO2, Al2O3 (self-limited one monolayer etch rate=about 1 ${\AA}$/cycle), BeO (self-limited one monolayer etch rate=about 0.75 ${\AA}$/cycle)를 얻었으며 그 결과 precise한 etch depth control로 minimal substrate recess 식각을 할 수 있었다.

  • PDF

Physicochemical Properties of Hydroxypropylated Corn Starches (하이드록시프로필화 옥수수 전분의 이화학적 특성)

  • Yook, Cheol;Pek, Un-Hua;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.175-182
    • /
    • 1991
  • Hydroxypropylated starches were prepared by reaction of corn starch with propylene oxide and their physicochemical properties were compared with those of the native starch. Swelling power, solubility and water binding capacity increased with the increase of hydroxypropylation. The hydroxypropylation of corn starch significantly reduced the extent of digestion and iodine absorption. Starch molecules larger than $1.34{\times}10^7{\sim}$ decreased whereas molecules ranging from $1.34{\times}10^7{\sim}1.18{\times}10^5$ increased by hydroxypropylation. Granule size increased by hydroxypropylation but this did not significantly affect the granule surface appearance by SEM. The hydroxypropylation improved the solubility and water binding capacity of corn starch.

  • PDF

Inhibitory Effects of Forsythia velutina and its Chemical Constituents on LPS-induced Nitric Oxide Production in BV2 Microglial Cells

  • Kim, Na-Yeon;Ko, Min Sung;Lee, Chung Hyun;Lee, Taek Joo;Hwang, Kwang-Woo;Park, So-Young
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Neuroinflammation is known to be associated with brain injury in Alzheimer's disease (AD), and the inhibition of microglial activation, a key player in inflammatory response, is considerd as important target for AD. In this study, the ethanol extract of aerial parts of Forsythia velutina Nakai, a Korean native species, significantly inhibited nitric oxide (NO) production in LPS-stimulated BV2 microglial cells. Thus, the active principles in F. velutina aerial parts were isolated based on activity-guided isolation method. As a result, six compounds were isolated and their structures were elucidated based on NMR data and the comparison with the relevant references as arctigenin (1), matairesinol (2), rengyolone (3), ursolic acid (4), secoisolariciresinol (5), and arctiin (6). Among them, four compounds including arctigenin (1), matairesinol (2), secoisolariciresinol (5), and arctiin (6) significantly inhibited NO production in a dose-dependent manner. In particular, matairesinol (2) and secoisolariciresinol (5) reduced 60% of NO production compared to LPS-treated group. This inhibitory effects of matairesinol (2) and secoisolariciresinol (5) were accompanied with the reduced expression levels of iNOS and COX-2. These results suggest that the extract of F. velutina and its active compounds could be beneficial for neuroinflammatory diseases including AD.

Effect of 5%Mg alloying in Al wire on corrosion resistance performance in saline solution (식염수에서 내식성 성능에 대한 Al 와이어의 5%Mg 합금 효과)

  • Singh, Jitendra Kumar;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.93-94
    • /
    • 2022
  • The presence of chloride (Cl-) ions in environments causes localized corrosion resulting decrease the durability of the structures. In this study, 5% Mg containing Al alloys (Al-5Mg) wire used vis-à-vis compared its corrosion resistance with pure Al in 3.5wt.% NaCl solution with exposure periods. Initially both wires exhibited identical open circuit potential (OCP) attributed to the presence of native oxide film on the surface but with the exposure periods it shifted towards active direction owing to the dissolution of oxide film. The pure Al continuously shifted the OCP towards active direction while Al-5Mg shows stabilization of OCP after 8 days of exposure. The OCP of Al-5Mg is slightly higher compared to pure Al wire owing to the activeness of Mg. The total impedance of the Al-5Mg alloy is almost three times greater than pure Al with exposure periods in 3.5 wt.% NaCl solution. It might be formation of Al-Mg LDH (layered double hydroxide) thin film onto the surface.

  • PDF

Characteristics of Fluorine-Doped Tin Oxide Film Coated on SUS 316 Bipolar Plates for PEMFCs (ECR-MOCVD를 이용하여 연료 전지 분리판에 코팅된 FTO막의 특성 연구)

  • Park, Ji-Hun;Hudaya, C.;Jeon, Bup-Ju;Byun, Dong-Jin;Lee, Joong-Kee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • Polymer electrolyte membrane fuel cells (PEMFCs) use the bipolar plate of various materials between electrolyte and contact electrode for the stable hydrogen ion exchange activation. The bipolar plate of various materials has representatively graphite and stainless steel. Specially, stainless steels have advantage for low cost and high product rate. In this study, SUS 316 was effectively coated with 600 nm thick F-doped tin oxide (SnOx:F) by electron cyclotron resonance-metal organic chemical vapor deposition and investigated in simulated fuel cell bipolar plates. The results showed that an F-doped tin oxide (SnOx:F) coating enhanced the corrosion resistance of the alloys in fuel cell bipolar plates, though the substrate steel has a significant influence on the behavior of the coating. Coating SUS 316 for fuel cell bipolar plates steel further improved the already excellent corrosion resistance of this material. After coating, the increased ICR values of the coated steels compared to those of the fresh steels. The SnOx:F coating seems to add an additional resistance to the native air-formed film on these stainless steels.

Atomic layer chemical vapor deposition of Zr $O_2$-based dielectric films: Nanostructure and nanochemistry

  • Dey, S.K.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.2-65
    • /
    • 2003
  • A 4 nm layer of ZrOx (targeted x-2) was deposited on an interfacial layer(IL) of native oxide (SiO, t∼1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 30$0^{\circ}C$. Some as-deposited layers were subjected to a post-deposition, rapid thermal annealing at $700^{\circ}C$ for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous $ZrO_2$-rich Zr silicate containing about 15% by volume of embedded $ZrO_2$ nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-$ZrO_2$(t-$ZrO_2$) and monoclinic-$ZrO_2$(m-$ZrO_2$) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper Si $o_2$-rich Zr silicate and the lower $SiO_{x}$. The latter was sub-toichiometric and the average oxidation state increased from Si0.86$^{+}$ in $SiO_{0.43}$ (as-deposited) to Si1.32$^{+}$ in $SiO_{0.66}$ (annealed). This high oxygen deficiency in $SiO_{x}$ indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor(MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of $ZrO_2$ and $SiO_2$, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multi-layer nanostructure and nanochemistry that evolves.ves.ves.

  • PDF

Physicochemical Properties of Hydroxypropylated Chestnut Starch (Hydroxypropyl화 밤 전분의 이화학적 특성)

  • Park, Young-Ae;Kim, Jun-Han;Hwang, Tae-Young;Moon, Kwang-Deog
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.999-1004
    • /
    • 1999
  • Physicochemical properties of the native chestnut starch(NCS) and hydroxypropylated chestnut starch(HCS) with propylene oxide were investigated. The water binding capacity and blue value of chestnut starch were increased by hydroxypropylation. With increasing temperature, the swelling power and solubility were increased and those of HCS were higher. The light transmittance of HCS was higher than it of NCS. Endotherm characteristics were studied with DSC showed that temperatures of initial gelatinization of NCS and HCS were $64.44^{\circ}C$ and $62.80^{\circ}C$, respectively. The temperature of initial gelatinization and enthalpies gelatinization in chestnut starch were decreased by hydroxypropylation. And the viscosity of HCS was higher than that of NCS.

  • PDF

Effect of Raw-Si Particle Size on the Mechanical Properties of Sintered RBSN (출발 Si 분말의 입자크기에 따른 Sintered RBSN의 기계적특성 변화)

  • 이주신;문지훈;한병동;박동수;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.740-748
    • /
    • 2001
  • 출발원료 Si 분말의 입자크기를 다양하게 하여 질화반응 및 가스압 소결시 입자크기에 따른 산소함량의 차이에서 나타나는 상변화와 그로 인한 치밀화 거동, 미세구조 발달 및 기계적 특성에 대하여 고찰하였다. 145$0^{\circ}C$의 질화반응에서는 조대분말을 사용한 경우가 미세분말을 사용한 경우보다 높은 질화율을 나타냈으며, 각 분말크기에 따른 native oxide의 함량차에 따라 각기 다른 2차 결정상들이 검출되었다. 조대분말을 사용한 경우에는 제 2상의 석출로 인한 액상량의 부족으로 고온의 소결온도에서도 치밀화를 이루지 못해 낮은 강도값을 나타내었다. 한편, 미세분말을 사용한 경우에는 질화반응 후 석출된 제 2상이 소결온도가 증가함에 따라 용융되면서 치밀화를 이루어 높은 강도값을 나타내었다. 높은 강도값은 미세분말을 사용한 시편들에서 얻어졌으나 높은 파괴인성값은 상대적으로 큰 분말을 사용한 시편들에서 얻어졌는데, 이는 미세한 입자들로 구성된 기지상 내에 잘 발달된 주상정 입자들을 갖는 미세구조에 기인된 것으로 사료된다.

  • PDF

Cosmeceutical effect from native medicinal plants of blue belt Ulleung islands (청정해역 울릉도자생약초를 이용한 화장품 약리활성 연구)

  • Bae, Hae-Byoung;Kim, Jin-Chul;Lee, Jin-Tae
    • The Korea Journal of Herbology
    • /
    • v.26 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • Objectives : The purpose of this research was total polyphenol contents, anti-oxidant activities, anti-inflammatory activities and anti-wrinkle activities of Ulleung islands plants for application as a cosmeceutical ingredients Methods : We were experimented total polyphenol contents, anti-oxidant activities, anti-inflammatory activity and anti-wrinkle activities. Results : In the physiological activities, most Ulleung islands plants is showed the highest anti-oxidant, anti-inflammatory activity in ABTS+ radical cation scavenging activity, hydrogen peroxide($H_2O_2$) scavenging activity, nitric oxide scavenging activity. All experiment of the water and ethanol extract from the Ulleung islands plants ingredients were gradually increased as well. Conclusions : These results suggest that extracts from Ulleung islands plants can be used in natural ingredient in food or cosmetic industry.

Surface Damage Characteristics of Self-Assembled Monolayer and Its Application in Metal Nano-Structure Fabrication (자기 조립 분자막의 표면파손특성 및 미세 금속 구조물 제작에의 응용)

  • Sung, In-Ha;Kim, Dae-Eun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.40-44
    • /
    • 2002
  • The motivation of this work is to use SAM(Self-Assembled Monolayer) for developing a rapid and flexible non-photolithographic nano-structure fabrication technique which can be utilized in micro-machining of metals as well as silicon-based materials. The fabrication technique implemented in this work consists of a two-step process, namely, mechanical scribing followed by chemical etching. From the experimental results, it was found that thiol on copper surface could be removed even under a few nN normal load. The nano-tribological characteristics of thiol-SAM on various metals were largely dependent on the native oxide layer of metals. Based on these findings, nano-patterns with sub-micrometer width and depth on metal surfaces such as Cu, Au and Ag could be obtained using a diamond-coated tip.

  • PDF