• 제목/요약/키워드: National water quality monitoring sites

검색결과 70건 처리시간 0.027초

장기 모니터링 자료를 이용한 팔당호 수질변화의 비모수적 추세분석 (Non-parametric Trend Analysis Using Long-term Monitoring Data of Water Quality in Paldang Lake)

  • 조항수;손주연;김귀다;신명철;조용철;신기식;노혜란
    • 환경영향평가
    • /
    • 제28권2호
    • /
    • pp.83-100
    • /
    • 2019
  • 본 연구는 팔당호 내 4개 지점을 대상으로 각 지점에서의 장기 수질 변화 및 지점 간 시차성을 확인하기 위하여 비모수적 추세분석 방법인 Seasonal Kendall test, LOWESS와 Cross Correlation을 수행하였다. 본 분석을 위하여 2004년 1월부터 2016년 12월까지, 각 지점별 9개 수질 항목(수온, EC, DO, BOD, COD, T-N, T-P, TOC, Chl-a)의 주별 분석 자료를 사용하였다. Seasonal Kendall test 결과 수온은 증가, EC와 T-N, T-P는 전 지점 모두 감소 경향을 나타내었다. LOWESS 결과 BOD 농도는 전 지점에서 2013년부터 2016년까지 "감소" 경향을 나타내었고 COD는 2012년부터 "증가" 경향을 나타내었다. 따라서 2012~2013년은 팔당호 전 지점에서 BOD의 개선과 함께 COD의 증가가 나타나는 전환기였음을 확인할 수 있었다. Cross Correlation 결과, 모두 시차성 없음으로 나타났다. 본 연구를 통하여 팔당호에 대한 보다 적합한 수질관리를 위하여 위의 전환기에 대한 발생원인 분석과 함께 수질 측정주기의 증가를 통한 보다 정밀한 모니터링이 필요할 것으로 판단된다.

부산 대천천의 저서성 대형무척추동물의 군집구조 (Community Structure of Benthic Macroinvertebrates of Daecheon Stream in Busan City)

  • 손정원;홍정희
    • 한국환경과학회지
    • /
    • 제19권2호
    • /
    • pp.185-196
    • /
    • 2010
  • The distribution of benthic macroinvertebrates in Daecheon stream, an urban stream of Busan, was investigated to analyze the community structure of benthic macroinvertebrates. The collection was performed monthly at five(A~E) sites divided into three parts, upper, middle and lower, of stream from January to November, 2004. In physicochemical analysis of environmental factors, water quality parameters such as BOD, COD, conductivity and ABS were relatively increased in sites B and C. Whereas sites A, D and E showed little variations with good water quality parameters. However, water quality parameters in all surveyed sites showed gradual decrease with time toward improvement of water quality. A total of 8,226 individuals including 4 phyla, 6 classes, 9 orders, 302 families and 44 species were identified from five sites. The most dominant group was insect(class Insecta), and order Ephemeroptera and Diptera among insect was the largest member in species(30.6%) and individuals(75.0%) of benthic macroinvertebrates, respectively. The primary dominant species were Gammarus sp. and Ephemera strigata in site A, whereas Chironomus sp. and Brenchiura sowerbyi were dominated commonly in the other sites. In community analysis of benthic macroinvertebrates of Daecheon stream diversity index showed relatively low values, whereas dominance index was significantly high. Diversity index was the highest in site A, whereas the dominance index was the highest in site B. However, diversity index showed gradual increase with time showing adverse mode in dominance index. From these results, it can be suggested that long-term ecological monitoring of benthic macroinvertebrate fauna is needed for sustainable management of Daecheon stream.

확률분포를 이용한 남한강 보 건설 전·후 수질변화 분석 (Analysis of Water-Quality Constituents Variations before and after Weir Construction in South Han River using Probability Distribution)

  • 김경섭
    • 한국물환경학회지
    • /
    • 제35권1호
    • /
    • pp.55-63
    • /
    • 2019
  • The Four Major Rivers Restoration Project started in 2009 and completed in early 2013 is a large-scale inter-ministry SOC project investing ₩22.2 $10^{12}$ and one of the Project's objectives was to enhance the water-quality grade through recovering the river eco-system and environment. The average concentration and probability distribution of water-quality constituents at given and selected sampling sites are very significant elements for analyzing and controlling the water-quality of rivers or reservoirs effectively. Average concentration can be estimated by point estimator, distribution function of water-quality constituents or Bootstrap method, in which the distribution function estimated with more data in case of insufficient dataset, is applied. Ipo and Gangcheon water-quality monitoring stations in South Han River were selected to compare and analyze the variation of concentration before and after Ipo and Gangcheon Weirs construction, using the whole 4-year's data, from 2005 to 2008 and from 2014 to 2017. Water-quality constituents such as BOD and COD relating to oxygen demanding wastes and TP and Chlorophyll-a relating to the process of nutrient enrichment called eutrophication were also selected. The guidelines for water-quality control and management after weir construction including evaluation of water-quality constituents' variations can be presented by this paper.

Monitoring of Moisture Content and Sediment Fineness as Predictors of Shoal Breaching in an Estuary

  • Lee, Seulki;Park, Sungjae;Lee, Chang-Wook
    • 한국측량학회지
    • /
    • 제36권1호
    • /
    • pp.25-32
    • /
    • 2018
  • Namdae-cheon in Gangwon-do Province, Korea, is a valuable well-preserved lagoon. The estuary of Namdae-cheon Stream is closed because of the surrounding natural sand shoal. Thus, during the dry season, river water cannot easily flow to the ocean and therefore stagnates. River water congestion causes environmental deterioration of estuaries, often by eutrophication. In this study, we examined wall disintegration in the estuary area and used it to determine appropriate measures for the conservation of estuary water quality in the future. A total of 24 sites were selected, with 13 sites on the west side and 11 sites on the east side of the estuary study area. Samples were collected and analyzed for particle size and moisture content both vertically and horizontally. Sedimentary deposition rate was measured, and subsidence analysis was performed. Particle size, water content, sedimentary deposition, and subsidence analyses indicated that flow shifted to the west during the study period. In conjunction with other variables that may affect changes in flow, these parameters can be used in future research to predict shoal breaches and associated changes in water flow direction.

끈상접촉산화시설을 이용한 하천수질정화 (Purification of Stream Water Quality by Using Rope Media Filter)

  • 정용준;임기성
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.238-243
    • /
    • 2006
  • In order to improve the water quality of stream water, the facilities equipped with rope media filter have been examined as a part of national projects. This work may provide design and operating parameters from 2 years monitoring for 2 streams. Depending on the characteristics of streams, the flow rate into the facilities were shown different, where K stream was almost the same and D stream was less than 25% of design flow rate. Although the clogging of filter media was not observed during the operation, the removal of accumulated sludges was required for the stable operation. The removal efficiencies of BOD, SS, T-N and T-P for D stream were 60.5%, 80.1%, 25.2% and 36.2%, respectively. The most important factor for the construction of stream water purification facilities was recommended for the selection of proper sites.

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • 대한원격탐사학회지
    • /
    • 제20권3호
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

영산강 수계 지류.지천의 수질 특성 평가 및 등급화 방안 (Evaluation of Water Quality Characteristics and Grade Classification of Yeongsan River Tributaries)

  • 정수정;김갑순;서동주;김정현;임병진
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.504-513
    • /
    • 2013
  • Water quality trends for major tributaries (66 sites) in the Yeongsan River basin of Korea were examined for 12 parameters based on water quality data collected every month over a period of 12 months. The complex data matrix was treated with multivariate analysis such as PCA, FA and CA. PCA/FA identified four factors, which are responsible for the structure explaining 78.2% of the total variance. The first factor accounting 27.3% of the total variance was correlated with BOD, TN, TP, and TOC, and weighting values were allowed to these parameters for grade classification. CA rendered a dendrogram, where monitoring sites were grouped into 5 clusters. Cluster 2 corresponds to high pollution from domestic wastewater, wastewater treatment and run-off from livestock farms. For grade classification of tributaries, scores to 10 indexes were calculated considering the weighting values to 3 parameters as BOD, TN and TP which were categorized as the first factor after FA. The highest-polluted group included 10 tributaries such as Gwangjucheon, Jangsucheon, Daejeoncheon, Gamjungcheon, Yeongsancheon. The results indicate that grade classification method suggested in this study is useful in reliable classification of tributaries in the study area.

Fish Fauna and Guild Compositions in Geum River Watershed

  • Lee, Eui-Haeng;Kim, Hyun-Mac;Lee, Jae-Kwan;Byeon, Myeong-Seop;An, Kwang-Guk
    • 생태와환경
    • /
    • 제41권4호
    • /
    • pp.490-498
    • /
    • 2008
  • This study was to analyze fish composition and ecological indicator characteristics from eight sampling sites of Geum River, October 2007. Total number of family and species sampled were 9 and 40. The most dominant family was Cyprinidae (27 species, 85%), and then followed by Cobitidae, Odomtobutidae, and Gobiidae. Constancy values of Zacco platypus and Zacco temminckii were 1.00 and 0.30, respectively, and the relative abundance of Acheilognathus koreensis and Pseudogobio esocinus were greater than 5% of the total. The number of Korean endemic species sampled in this Geum River study was 7 family 19 species, which is 47.5% of total 40 species, and endangered species of Pseudopungtungia nigra and Gobiobotia brevibarba were only 0.5% of the total and these species were only distributed within the upstream regions. Exotic species, Micropterus salmoides, which is known as large-mouth bass, were observed in two sites of G3 and G7. Analytical results of fish community showed that community dominance index was 0.19, which is low, and the species evenness index (0.74), diversity index (2.03), and richness index (3.00) appeared high. These results indicate that structure of fish community is stable in the Geum River. According to various guilds analysis, the relative abundance of tolerant and omnivores at all sites were 40% and 47% of the total, respectively. This monitoring data may contribute changes of fish fauna and compositions in relation to habitat modifications and chemical water quality degradations in the future.

Estimation and Classification of Flow Regimes for South Korean Streams and River

  • Park, Kyug Seo;Choi, Ji-Woong;Park, Chan-Seo;An, Kwang-Guk;Wiley, Michael J.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.106-106
    • /
    • 2015
  • The information of flow regimes continues to be norm in water resource and watershed management, in that stream flow regime is a crucial factor influencing water quality, geomorphology, and the community structure of stream biota. The objectives of this study were to estimate Korean stream flows from landscape variables, classify stream flow gages using hydraulic characteristics, and then apply these methods to ungaged biological monitoring sites for effective ecological assessment. Here I used a linear modeling approach (MLR, PCA, and PCR) to describe and predict seasonal flow statistics from landscape variables. MLR models were successfully built for a range of exceedance discharges and time frames (annual, January, May, July, and October), and these models explained a high degree of the observed variation with r squares ranging from 0.555 (Q95 in January) to 0.899 (Q05 in July). In validation testing, predicted and observed exceedance discharges were all significantly correlated (p<0.01) and for most models no significant difference was found between predicted and observed values (Paired samples T-test; p>0.05). I classified Korean stream flow regimes with respect to hydraulic and hydrologic regime into four categories: flashier and higher-powered (F-HP), flashier and lower-powered (F-LP), more stable and higher-powered (S-HP), and more stable and lower-powered (S-LP). These four categories of Korean streams were related to with the characteristics of environmental variables, such as catchment size, site slope, stream order, and land use patterns. I then applied the models at 684 ungaged biological sampling sites used in the National Aquatic Ecological Monitoring Program in order to classify them with respect to basic hydrologic characteristics and similarity to the government's array of hydrologic gauging stations. Flashier-lower powered sites appeared to be relatively over-represented and more stable-higher powered sites under-represented in the bioassessment data sets.

  • PDF

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • 제42권4호
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.