• Title/Summary/Keyword: National archives

검색결과 2,732건 처리시간 0.031초

Isolation and Characterization of Proteoglycan Derived From Human Placenta and its Biological Activities

  • Lee, Kyung-Bok;Kim, Jong-Sig;Yoo, Yung-Choon;Kwak, Sang-Tae;Song, Kyung-Sik;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.182-186
    • /
    • 2000
  • Chondroitin sulfates proteoglycans were isolated from human placenta. For the identification of enzymatic digestion products of isolated proteoglycan, strong anion exchange-high performance liquid chromatography (SAX-HPLC) was performed. By the action of chondroitin ABC and chondroitin B lyase, three unsaturated disaccharides 2-acetamide-2-deoxy-3-O-($\beta$-D-gluco-4-enepyranosyluronic acid)-D-galactose ($\delta$Di-OS), 2-acetamide-2-deoxy-3-O-($\beta$-D-gluco-4-enepyranosyluronic acid)-6-O-su lfo-D-galactose ($\delta$Di-6S) and 2-acetamide-2-deoxy-3-O-($\beta$-D-gl uco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose ($\delta$Di-4S) were produced from the human placenta proteoglycan. The anticoagulant activity of chondroitin sulfate proteoglycan was evaluated by activated partial thromboplastin time (aPTT) assay and thrombin time (TT) assay. The clotting times of aPTT and TT were increased from 72 to 144 sec and 19 to 27 sec, respectively. The Immune-modulating activity of chondroitin sulfate proteoglycan was examined by cell proliferation assay and these results suggest that it may play a role in suppression of the function of immune-related cells.

  • PDF

Physicochemical Characterization and In Vivo Evaluation of Thermosensitive Diclofenac Liquid Suppository

  • Yong, Chul-Soon;Choi, Young-Kwon;Kim, Yong-Il;Park, Byung-Joo;Quan, Qi-Zhe;Rhee, Jong-Dal;Kim, Chong-Kook;Choi, Han-Gon
    • Archives of Pharmacal Research
    • /
    • 제26권2호
    • /
    • pp.162-167
    • /
    • 2003
  • Liquid suppository systems composed of poloxamers and bioadhesive polymers were easy to administer to the anus and mucoadhesive to the rectal tissues without leakage after the dose. However, a liquid suppository containing diclofenac sodium could not be developed using bioadhesive polymers. since the drug was precipitated in this preparation. To develop a liquid suppository system using sodium chloride instead of bioadhesive polymers, the physicochemical properties such as gelation temperature, gel strength and bioadhesive force of various formulations composed of diclofenac sodium, poloxamers and sodium chloride were investigated. Furthermore, the pharmacokinetic study of diclofenac sodium delivered by the liquid suppository was performed. Diclofenac sodium significantly increased the gelation temperature and weakened the gel strength and bioadhesive force, while sodium chloride did the opposite. The liquid suppositories with less than 1.0% of sodium chloride, in which the drug was not precipitated, were inserted into the rectum without difficulty and leakage. Furthermore, liquid suppository gave significantly higher initial plasma concentrations and faster Tmax of diclofenac sodium than did solid suppository, indicating that drug from liquid suppository could be absorbed faster than that from solid one in rats. Our results suggested that a thermosensitive liquid suppository system with sodium chloride and poloxamers was a more physically stable, convenient and effective rectal dosage form for diclofenac sodium.

Identification of Alkylation-Sensitive Target Chaperone Proteins and Their Reactivity with Natural Products Containing Michael Acceptor

  • Liu, Xi-Wen;Sok, Dai-Eun
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1047-1054
    • /
    • 2003
  • Molecular chaperones have a crucial role in the folding of nascent polypeptides in endoplasmic reticulum. Some of them are known to be sensitive to the modification by electrophilic metabolites of organic pro-toxicants. In order to identify chaperone proteins sensitive to alkyators, ER extract was subjected to alkylation by 4-acetamido-4 -maleimidyl-stilbene-2,2 -disulfonate (AMS), and subsequent SDS-PAGE analyses. Protein spots, with molecular mass of 160, 100, 57 and 36 kDa, were found to be sensitive to AMS alkylation, and one abundant chaperon protein was identified to be protein disulfide isomerase (PDI) in comparison with the purified PDI. To see the reactivity of PDI with cysteine alkylators, the reduced form ($PDI_{red}$) of PDI was incubated with various alkylators containing Michael acceptor structure for 30 min at $38^{\circ}C$ at pH 6.3, and the remaining activity was determined by the insulin reduction assay. Iodoacetamide or N-ethylmaleimide at 0.1 mM remarkably inactivated $PDI_{red}$ with N-ethylmaleimide being more potent than iodoacetamide. A partial inactivation of $PDI_{oxid}$ was expressed by iodoacetamide, but not N-ethylmaleimide (NEM) at pH 6.3. Of Michael acceptor compounds tested, 1,4-benzoquinone ($IC_{50}, 15 \mu$ M) was the most potent, followed by 4-hydroxy-2-nonenal and 1,4-naphthoquinone. In contrast, 1,2-naphthoquinone, devoid of a remarkable inactivation action, was effective to cause the oxidative conversion of $PDI_{red}$ to $PDI_{oxid}$. Thus, the action of Michael acceptor compounds differed greatly depending on their structure. Based on these, it is proposed that POI, one of chaperone proteins in ER, could be susceptible to endogenous or xenobiotic Michael acceptor compounds in vivo system.

The Isolation and Antioxidative Effects of Vitexin from Acer palmatum

  • Kim Jin Hwa;Lee Bum Chun;Kim Jin Hui;Sim Gwan Sub;Lee Dong Hwan;Lee Kyung Eun;Yun Yeo Pyo;Pyo Hyeong Bae
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.195-202
    • /
    • 2005
  • Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental factors are critical players in cellular damage and aging. In order to develop a new antiphotoaging agent, this work focused on the antioxidant effects of the extract of tinged autumnal leaves of Acer palmatum. One compound was isolated from an ethyl acetate soluble fraction of the A. palmatum extract using silica gel column chromatography. The chemical structure was identified as apigenin-8-C-beta-D-glucopyranoside, more commonly known as vitexin, by spectral analysis including LC-MS, FT-IR, UV, $^{1}H-$, and $^{13}C-NMR$. The biological activities of vitexin were investigated for the potential application of its anti-aging effects in the cosmetic field. Vitexin inhibited superoxide radicals by about $70\%$ at a concentration of $100\;{\mu}g/mL$ and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals by about $60\%$ at a concentration of $100\;{\mu}g/mL$. Intracellular ROS scavenging activity was indicated by increases in dichlorofluorescein (DCF) fluorescence upon exposure to UVB $20\;mJ/cm^2$ in cultured human dermal fibroblasts (HDFs) after the treatment of vitexin. The results show that oxidation of 5-(6-)chloromethyl-2',7'-dichlo-rodihydrofluorescein diacetate ($CM-H_{2}DCFDA$) is inhibited by vitexin effectively and that vitexin has a potent free radical scavenging activity in UVB-irradiated HDFs. In ROS imaging using a confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our findings suggest that vitexin can be effectively used for the prevention of UV-induced adverse skin reactions such as free radical production and skin cell damage.

Identification of Glutathione Conjugates of 2, 3-Dibromopropene in Male ICR Mice

  • Lee Sang Kyu;Baik Seo Yeon;Jeon Tae Won;Jun In Hye;Kim Ghee Hwan;Jin Chun Hua;Lee Dong Ju;Kim Jun Kyou;Yum Young Na;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • 제29권2호
    • /
    • pp.172-177
    • /
    • 2006
  • Hepatotoxic potential of 2, 3-dibromopropene (2, 3-DBPE) and its conjugation with glutathione (GSH) were investigated in male ICR mice. Treatment of mice with 20, 50, and 100 mg/kg of 2, 3-DBPE for 24 h caused elevation of serum alanine aminotransferase and aspartate aminotransferase activities. The hepatic content of GSH was not changed by 2, 3-DBPE. Meanwhile, the GSH content was slightly reduced when mice were treated with 2, 3-DBPE for 6 h and significantly increased 12 h after the treatment. Subsequently, a possible formation of GSH conjugate of 2, 3-DBPE was investigated in vivo. After the animals were treated orally with 20, 50, and 100 mg/kg of 2, 3-DBPE, the animals were subjected to necropsy 6, 12, and 24 h later. A conjugate of S-2-bromopropenyl GSH was identified in liver and serum treated with 100 mg/kg of 2, 3-DBPE by using liquid chromatography-electrospray ionization tandem mass spectrometry. The protonated molecular ions $[M+H]^+$ of S-2-bromopropenyl GSH were observed at m/z 425.9 and 428.1 in the positive ESI spectrum with a retention time of 6.35 and 6.39 min, respectively. In a time-course study in livers following an oral treatment of mice with 100 mg/kg of 2, 3-DBPE for 6, 12, and 24 h, the 2, 3-DBPE GSH conjugate was detected maximally 6 h after the treatment. The present results suggested that 2, 3-DBPE-induced hepatotoxicity might be related with the production of its GSH conjugate.

Synthesis and Evaluation of Antitumor Activity of Novel 1,4-Naphthoquinone Derivatives (IV)

  • Kim Bok Hee;Yoo Jikang;Park Si-Hyun;Jung Jae-Kyung;Cho Hoon;Chung Yongseog
    • Archives of Pharmacal Research
    • /
    • 제29권2호
    • /
    • pp.123-130
    • /
    • 2006
  • 1,4-Naphthoquinones are widely distributed in nature and many clinically important antitumor drugs containing a quinone moiety, such as anthracyclines, mitoxantrones and saintopin, show excellent anticancer activity. In this study, 2- or 6-substituted 5,8-dimethoxy-1,4-naphthoquinone (DMNQ) and 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) derivatives were synthesized, and their cytotoxic activity against L1210 and P388 cancer cells was examined. Their antitumor activity was also assessed in mice bearing S-180 cells in the peritoneal cavity. In comparison with the DMNQ derivatives, the DHNQ derivatives exhibited more potent bioactivities than the DMNQ derivatives against both L1210 and P388 cells in vitro and S-180 cells in vivo. The $ED_{50}$ values of the DHNQ derivatives against P388 cells were in the range of 0.18-1.81 ${\mu}g/mL$ whereas those of the DMNQ derivatives were in the range of 0.26-40.41 ${\mu}g/mL$. The T/C ($\%$) values of the DHNQ derivatives, 8, 17, 18, 19, and 20, were found to be comparable to or even better than that of adriamycin. It was also observed that the 2-substituted derivatives (8, 19, 20) showed better antitumor activity than the 6-substituted derivatives (7, 17, 18) in the mice bearing S-180 cells in the peritoneal cavity.

Sanguiin H-6 Blocks Endothelial Cell Growth through Inhibition of VEGF Binding to VEGF Receptor

  • Lee Sung-Jin;Lee Hak-Kyo
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1270-1274
    • /
    • 2005
  • The vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, which is a process where new blood vessels develop from the endothelium of a pre-existing vasculature. VEGF exerts its activity by binding to its receptor tyrosine kinase, KDR/Flk-1, which is expressed on the surface of endothelial cells. A methanol extract and organic solvent (n-hexane, ethyl acetate, n-butanol, aqueous) fractions from Rubus coreanus were examined for their inhibitory effects on VEGF binding to the VEGF receptor. The methanol extract from the crude drug were found to significantly inhibit VEGF binding to the VEGF receptor ($IC_{50}$$\thickapprox$27 $\mu$g/mL). Among the fractions examined, the aqueous fraction from the medicinal plant showed potent inhibitory effects against the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ in a dose­dependent manner ($IC_{50}$$\thickapprox$11 $\mu$g/mL). Sanguiin H-6 was isolated as an active principle from the aqueous fraction, and inhibited the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ in a dose­dependent manner ($IC_{50}$$\thickapprox$0.3 $\mu$g/mL). In addition, sanguiin H-6 efficiently blocked the VEGF­induced HUVEC proliferation in a dose-dependent manner ($IC_{50}$$\thickapprox$7.4 $\mu$g/mL) but had no effect on the growth of HT1080 human fibrosarcoma cells. This suggests that sanguiin H-6 might be a potential anti-angiogenic agent.

$Ginsenoside-R_{b1}$ Acts as a Weak Phytoestrogen in MCF-7 Human Breast Cancer Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Park, Wan-Kyu;Cho, Jung-Yoon;Jang, Si-Youl;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • 제26권1호
    • /
    • pp.58-63
    • /
    • 2003
  • Ginseng has been recommended to alleviate the menopausal symptoms, which indicates that components of ginseng very likely contain estrogenic activity. We have examined the possibility that a component of Panax ginseng, $ginsenoside-R_{b1}$ acts by binding to estrogen receptor. We have investigated the estrogenic activity of $ginsenoside-R_{b1}$ in a transient transfection system using estrogen-responsive luciferase plasmids in MCF-7 cells. $ginsenoside-R_{b1}$ activated the transcription of the estrogen-responsive luciferase reporter gene in MCF-7 breast cancer cells at a concentration of 50 $\mu$M. Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of $ginsenoside-R_{b1}$ is estrogen receptor dependent. Next, we evaluated the ability of $ginsenoside-R_{b1}$ to induce the estrogen-responsive gene c-fos by semi-quantitative RT-PCR assays and Western analyses. $ginsenoside-R_{b1}$ increased c-fos both at mRNA and protein levels. However, $ginsenoside-R_{b1}$ failed to activate the glucocorticoid receptor, the retinoic acid receptor, or the androgen receptor in CV-1 cells transiently transfected with the corresponding steroid hormone receptors and hormone responsive reporter plasmids. These data support our hypothesis that $ginsenoside-R_{b1}$ acts a weak phytoestrogen, presumably by binding and activating the estrogen receptor.

Effects of Methyl Gallate on Arachidonic Acid Metabolizing Enzymes: Cyclooxygenase-2 and 5-Lipoxygenase in Mouse Bone Marrow-Derived Mast Cells

  • Kim, Se-Jong;Jin, Mei-Hua;Lee, Eun-Kyung;Moon, Tae-Chul;Quan, Zhe-Jiu;Yang, Ju-Hye;Son, Kun-Ho;Kim, Kil-Ung;Son, Jong-Kun;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.874-878
    • /
    • 2006
  • Methyl gallate (MG) is a medicinal herbal product that is isolated from Paeonia lactiflora that inhibits cyclooxygenase-2 (COX-2) dependent phases of prostaglandin $D_2\;(PGD_2)$ generation in bone marrow-derived mast cells (BMMC) in a concentration-dependent manner with an $IC_{50}$ values of $17.0\;{\mu}M$. This compound also found inhibited the COX-2-dependent conversion of the exogenous arachidonic acid to $PGD_2$ in a dose-dependent manner with an $IC_{50}$ values of $190\;{\mu}M$, using a COX enzyme assay kit. However, at concentrations up to $80\;{\mu}M$, MG did not inhibit COX-2 protein expression in BMMC, indicating that MG inhibits COX-2 activity directly. Furthermore, MG consistently inhibited the production of leukotriene $C_4\;(LTC_4)$ in a dose dependent manner, with an $IC_{50}$ value of $5.3\;{\mu}M$. These results demonstrate that MG has a dual cyclooxygenase-2/5-lipoxygenase inhibitory activity, which might provide the basis for novel anti-inflammatory drugs.

Polyoxygenated Flavones; Synthesis, Cytotoxicities and Antitumor Activity against ICR Mice Carrying S-180 Cells

  • Song, Gyu-Yong;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • 제18권6호
    • /
    • pp.440-448
    • /
    • 1995
  • Fitty two flavones were synthesized from polyoxygenated dibenzoylmethanes which were obtained by a modified Baker-Venkatarman rearrangement, of 2-benzoyl oxyacetophenones. The following flavones among them showed good cytotoxic activities against L1210 and HL60 cells ; 2'-benzoyloxy-5,7-dimethoxyflavone $(8.2{\mu}g/ml,{\;}5.0 {\mu}g/ml)$, 2'-benzyloxy-5,7,8-trimethoxyflavone $(5,9 {\mu}g/ml,{\;}11.0{\mu}g/ml,{\;}2.7{\mu}g/ml)$, 2'-hydroxy-5,7,8-trimethoxyflavone $(9.8{\mu}/ml,{\;}6.2{\mu}g/ml)$, 2'-benzyloxy-5-hydroxyflavone $(5.2 {\mu}g/ml,{\;}3.6{\mu}g/ml)$, and 5,2'-dihydroxyflavone $(5.1{\mu}g/ml,{\;}4.0{\mu}g/ml)$. Presence of 5-methoxy group potentiated the cytotoxic activity, while the existence of 7-methoxy group decreased the activity. 5-Hydroxy or methoxy activates 4-carbonyl group, while 7-methoxy group deactivates the acrbonyl group. From these observation it was concluded that the activation of carbonyl group at C-4 of a flavone is important for the enahncement of the cytotoxic activity. The presence of both 5-hydroxy and 2-benzyloxy-or 2-hydroxy group enhanced the antitumor activity; 2'-benzyloxy-5-hydroxy-7-methoxyflaone 9T/C=144%), 5.2'-dihydroxy-7-methoxyflavone (T/C=132%) and 5,2'-dihydroxy-6,78,6' trtramethoxyflvone (T/C = 172%) 2'hexanolytion of 5,2'-dihydroxy-flavones did not improve the natitumor activity; 2' hexanoyloxy-5-hydroxy-7-methoxyflavone showed T/C = 132%, about the same as that of 5,2'-dihydroxy-7-methoxyflvone (T/C=130%)

  • PDF