Identification of Alkylation-Sensitive Target Chaperone Proteins and Their Reactivity with Natural Products Containing Michael Acceptor

  • Liu, Xi-Wen (College of Pharmacy, Chungnam National University) ;
  • Sok, Dai-Eun (College of Pharmacy, Chungnam National University)
  • Published : 2003.11.01

Abstract

Molecular chaperones have a crucial role in the folding of nascent polypeptides in endoplasmic reticulum. Some of them are known to be sensitive to the modification by electrophilic metabolites of organic pro-toxicants. In order to identify chaperone proteins sensitive to alkyators, ER extract was subjected to alkylation by 4-acetamido-4 -maleimidyl-stilbene-2,2 -disulfonate (AMS), and subsequent SDS-PAGE analyses. Protein spots, with molecular mass of 160, 100, 57 and 36 kDa, were found to be sensitive to AMS alkylation, and one abundant chaperon protein was identified to be protein disulfide isomerase (PDI) in comparison with the purified PDI. To see the reactivity of PDI with cysteine alkylators, the reduced form ($PDI_{red}$) of PDI was incubated with various alkylators containing Michael acceptor structure for 30 min at $38^{\circ}C$ at pH 6.3, and the remaining activity was determined by the insulin reduction assay. Iodoacetamide or N-ethylmaleimide at 0.1 mM remarkably inactivated $PDI_{red}$ with N-ethylmaleimide being more potent than iodoacetamide. A partial inactivation of $PDI_{oxid}$ was expressed by iodoacetamide, but not N-ethylmaleimide (NEM) at pH 6.3. Of Michael acceptor compounds tested, 1,4-benzoquinone ($IC_{50}, 15 \mu$ M) was the most potent, followed by 4-hydroxy-2-nonenal and 1,4-naphthoquinone. In contrast, 1,2-naphthoquinone, devoid of a remarkable inactivation action, was effective to cause the oxidative conversion of $PDI_{red}$ to $PDI_{oxid}$. Thus, the action of Michael acceptor compounds differed greatly depending on their structure. Based on these, it is proposed that POI, one of chaperone proteins in ER, could be susceptible to endogenous or xenobiotic Michael acceptor compounds in vivo system.

Keywords

References

  1. Ahn, B. Z. and Sok, D.-E., Michael acceptors as a tool for anticancer drug design. Curr. Pharmaceut. Design, 2, 247-262 (1996)
  2. Bastyns, K. and Engelborghs, Y., Acrylamide quenching of the fluorescence of glyceraldehyde-3-phosphate dehydrogenase: reversible and irreversible effects. Photochem. Photobiol., 55, 9-16 (1992) https://doi.org/10.1111/j.1751-1097.1992.tb04203.x
  3. Cai, H., Wang, C.-C., and Tsou, C.-L., Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J. Biol. Chem., 269, 24550-24552 (1994)
  4. Calvert, M. E., Digilio, L. C., Herr, J. C., and Coonrod, S. A., Oolemmal proteomics identification of highly abundant heat shock proteins and molecular chaperones in the mature mouse egg and their localization on the plasma membrane, Reprod. Biol. Endocrinol., 1, 27 (2003) https://doi.org/10.1186/1477-7827-1-27
  5. Edman, J. C., Ellis, L., Blacher, R, W., Roth, R. A., and Rutter, W. J., Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature, 317, 267-270 (1985) https://doi.org/10.1038/317267a0
  6. Esterbauer, H., Schaur, R. J., and Zollner, H., Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 11, 81-128 (1991) https://doi.org/10.1016/0891-5849(91)90192-6
  7. Ferrari, D. M. and Soling, H.-D., The Protein Disulphide-Isomerase Family: Unravelling a String of Folds. Biochem. J., 339, 1-10 (1997) https://doi.org/10.1042/0264-6021:3390001
  8. Freedman, R. B., Hirst, T. R., and Tuite, M. F., Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci., 19, 331-336 (1994) https://doi.org/10.1016/0968-0004(94)90072-8
  9. Gan, J. C. and Ansari, G. A., Inactivation of plasma alpha-1 proteinase inhibitor by acrolein adduct formation with lysine and histidine residues. Mol. Toxicol., 2, 137-146 (1989)
  10. Gething, M-J. H. and Sambrook, J., Protein folding in the cell. Nature, 355, 33-45 (1992) https://doi.org/10.1038/355033a0
  11. Gilbert, H. F., Protein disulfide isomerase and assisted protein folding. J. Biol. Chem., 272, 29399-29402 (1997) https://doi.org/10.1074/jbc.272.47.29399
  12. Hawkins, H. C. and R. B. Freedman, R. B., The reactivities and ionization properties of the active-site dithiol groups of mammalian protein disulfide isomerase. Biochem. J., 275, 335-340 (1991) https://doi.org/10.1042/bj2750335
  13. Holmgren, A., Thiredoxin. Annu. Rev. Biochem., 54, 237-271 (1985) https://doi.org/10.1146/annurev.bi.54.070185.001321
  14. Kim, J.-R., Yoon, H. W., Kwon, K.-S., Lee, S.-R., and Rhee, S. G., Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide ar neutrl pH. Anal. Biochem., 283, 214-221 (2000) https://doi.org/10.1006/abio.2000.4623
  15. Kim, J.-R., Kwon, H. W., Yoon, K.-S., Lee, H. W., Lee, S.-R., and Rhee, S. G., Oxidation of proteinaceous cysteine residues by dopamine-derived $H_2O_2$ in PC12 cells. Arch. Biochem. Biophys., 283, 214-221 (2002)
  16. Kobayashi, T., Kishigami, S., Sone, M., Inokuchi, H., Mogi, T., and Ito, K., Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc. Natl. Acad. Sci. USA, 94,11857-11862 (1997) https://doi.org/10.1073/pnas.94.22.11857
  17. Koen, Y. M. and Hanzlik, R. P., Identification of seven proteins in the endoplasmic reticulum as targets for reactive metabolites of bromobenzene. Chem. Res. Toxicol., 15, 699-706 (2002) https://doi.org/10.1021/tx0101898
  18. Lame, M. W., Jones, A. D., Wilson, D. W., and Segall, H. J., Protein targets of 1,4-benzoquinone and 1,4-naphthoquinone in human bronchial epithelial cells. Proteomics, 3, 479-495 (2003) https://doi.org/10.1002/pmic.200390062
  19. Montine, T. J., Neely, M. D., Quinn, J. F., Beal, M. F., Markesbery, W. R., Roberts, L. J. II, and Morrow, J. D., Lipid peroxidation in aging brain and Alzheimer's disease. Free Radic. Biol. Med., 33, 620-626 (2002) https://doi.org/10.1016/S0891-5849(02)00807-9
  20. Noiva, R., Enzymatic catalysis of disulfide formation. Protein Expr. Purif., 5, 1-13 (1994) https://doi.org/10.1006/prep.1994.1001
  21. Primm, T. P. and Gilbert, H. F., Hormone binding by protein disulfide isomerase, a high capacity hormone reservoir of the endoplasmic reticulum. J. Biol. Chem., 276, 281-286 (2001) https://doi.org/10.1074/jbc.M007670200
  22. Puig, A. and Gilbert, H. F., Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J. Biol. Chem., 269, 7764-7771 (1994)
  23. Rigobello, M. P., Donella-Deana, A., Cesaro, L., and Bindoli, A., Isolation, purification, and characterization of a rat liver mitochondrial protein disulfide isomerase. Free Radic. Biol. Med., 28, 266-272 (2000) https://doi.org/10.1016/S0891-5849(99)00237-3
  24. Sok, D.-E., Choi, D.-S., Kim, Y.-B., Lee, Y.-H., and Cha, S. H., Selective inactivation of glyceraldehydes-3-phosphate dehydrogenase by vinyl sulfones. Biochem. Biophys. Res. Commun., 195, 1224-1229 (1993) https://doi.org/10.1006/bbrc.1993.2175
  25. Tjalkens, R. B., Luckey, S. W., Kroll, D. J., and Petersen, D. R., Unsaturated aldehydes increase glutathione S-transferase mRNA and protein correlation with activation of the antioxidant response element. Archiv. Biochem. Biophys., 359, 42-50 (1998) https://doi.org/10.1006/abbi.1998.0895
  26. Uchida, K. and Stadtman, E. R., Quantitation of 4-hydroxy-2-nonenal protein adduct. Methods Enzymol., 233, 371-380 (1994) https://doi.org/10.1016/S0076-6879(94)33043-3
  27. Wiest, D. L., Bhandoola, A, Punt, J., Kreibich, G., McKean, D., and Singer, A., Incomplete endoplasmic reticulum (ER) retention in immature thymocytes as revealed by surface expression of 'ER-resident' molecular chaperones. Proc. Natl. Acad. Sci. USA, 94, 1884-1889 (1997) https://doi.org/10.1073/pnas.94.5.1884
  28. Zhou, L., Dehal, S. S., Kupfer, D., Morrell, S., McKenzie, B. A., Eccleston, E. D., and Holtzman, J. L., Cytochrome P450 catalyzed covalent binding of methoxychlor to rat hepatic microsomal iodothyronine 5'-monodeiodinase, Type I: Does exposure to methoxychlor disrupt thyroid hormone metabolism? Arch. Biochem. Biophys., 322, 390-394 (1995) https://doi.org/10.1006/abbi.1995.1479
  29. Zhou, L., McKenzie, B. A., Eccleston, E. D., Srivastava, S. P., Chen, M., Erickson, R., R., and Holtzman, J. L., The covalent binding of $[^{14}C]$-acetaminophen to mouse hepatic microsomal proteins: The specific binding to calreticulin and the two forms of the thiol:protein disulfide oxidoreductases. Chem. Res. Toxicol., 9, 1176-1182 (1996) https://doi.org/10.1021/tx960069d