• Title/Summary/Keyword: National Forest Management System

Search Result 420, Processing Time 0.029 seconds

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model (MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측)

  • Lee, Min-Ki;Chun, Jung-Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.55-67
    • /
    • 2021
  • Hornbeams (Carpinus spp.), which are widely distributed in South Korea, are recognized as one of the most abundant species at climax stage in the temperate forests. Although the distribution and vegetation structure of the C. laxiflora community have been reported, little ecological information of C. tschonoskii is available. Little effort was made to examine the distribution shift of these species under the future climate conditions. This study was conducted to predict potential shifts in the distribution of C. laxiflora and C. tschonoskii in 2050s and 2090s under the two sets of climate change scenarios, RCP4.5 and RCP8.5. The MaxEnt model was used to predict the spatial distribution of two species using the occurrence data derived from the 6th National Forest Inventory data as well as climate and topography data. It was found that the main factors for the distribution of C. laxiflora were elevation, temperature seasonality, and mean annual precipitation. The distribution of C. tschonoskii, was influenced by temperature seasonality, mean annual precipitation, and mean diurnal rang. It was projected that the total habitat area of the C. laxiflora could increase by 1.05% and 1.11% under RCP 4.5 and RCP 8.5 scenarios, respectively. It was also predicted that the distributional area of C. tschonoskii could expand under the future climate conditions. These results highlighted that the climate change would have considerable impact on the spatial distribution of C. laxiflora and C. tschonoskii. These also suggested that ecological information derived from climate change impact assessment study can be used to develop proper forest management practices in response to climate change.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.

Farm Land Use Classification for the Planning of Planting of Eucalyptus Spp. at Mato Grosso do Sul of Brazil Using Remote Sensing and Geographic Information System (브라질 Mato Grosso do Sul 주에서의 유칼리나무 식재계획(植栽計劃)을 위한 농장토지이용구분(農場土地利用區分)에 관한 연구(硏究) - 원격탐사기술(遠隔探査技術)과 지리정보(地理情報)시스템(GIS)의 적용(適用) -)

  • Woo, Jong-Choon;Nobrega, Ricardo Campos;Imana-Encinas, Jose
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.157-168
    • /
    • 1999
  • This paper analyzed vegetation and land use classification, slope and permanent preservation and legal reserves on the farm Jangada and Jamaica-Mato Grosso do Sul, Brazil, using satellite image for assisting the planning of planting Eucalyptus spp. This part of the State of Mato Grosso do Sul represents an important geopolitcal area, since it is located on the borders of Bolivia and Paraguay. Also exportation of goods can be achieved through hydrovias extending to Buenos Aires, Argentina-through the Paraguay River. Also there are road and railroad connection which link the soutreastern part of Brazil to the Andean countries. The vegetation map from sheet SF 21-Campo Grande of the RADAMBRASIL Project was used as the basis for the preliminary interpretation of coverage, and complemented by a visit of the field. After the initial interpretation of the image, definition of classes of use and land occupation were made, and files of spectral signatures were created. On the farms Jamaica and Jangada Open Arboreal Savanna and Grass Savanna are the predominant physiognomies occupying 68% of total area. In spite of the results being satisfactory at the present moment, the development of this project should be revised and adjusted based on the evaluations already made, including a greater detailing of environmental components, principally with respect to soil and topography.

  • PDF

Analysis of food availability and food security status in Nepal for forest resource conservation purpose

  • Panta, Menaka;Kim, Kye-Hyun;Neupane, Hari Sharma;Joshi, Chudamani
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.153-161
    • /
    • 2008
  • Agriculture and forest are basis for livelihood in Nepal while both sectors constitute around 40 percent of the national product and over two-thirds of the economically active population is dependent on agriculture. However, radical changes in land use, depletion in crops production and food availability are major threats due to loss of soil fertilityand severe environmental degradation. In this study, we used time series data from 1986/87 to 2005/06 about food crop production and population published by Government of Nepal, Ministry of Agriculture and Cooperatives and Central Bureau of Statistics. Descriptive statistics and ArcGIS were used to assess and map the food security status of Nepalese Terai based on the local food demand and supply system. Food supply to demand ratio(FSDR) was the main idea of assessment. Our results showed that out of 20 districts, only 8 districts were categorised under secured food districts whereas 5 districts were still under food unsecured situation. The analysis further revealed that 7 districts had faced food deficit more than 8-16 times during the last 20 year periods. Data further showed that there was surplus food supply relative to the requirements dictated by FSDR. However, the average FSDR was less than 1.2(less than 20% surplus) exploring fact that most of the districts were not producing sufficient food to cope up the food shock and after 1995 it was relatively stagnant. Our prediction reveals that food supply in Terai even in the future would remain at almost the same level as now, and there will not more than 16-17% surplus by 2021 considering medium vibrant population growth. The findings thus, indicate that Terai may not be a food secure region in the future, even though the region is considered as a food storage house of Nepal. In addition, this paper suggests ways to make future comprehensive case studies more widely comparable in Terai, Nepal.

  • PDF

Assessment of Fence Height to Prevent Roadkill of Water Deer(Hydropotes inermis) (고라니(Hydropotes inermis)의 로드킬(Roadkill) 방지 울타리 적정 높이 평가)

  • Park, Heebok;Woo, Donggul;Song, Eui-Geun;Lim, Anya;Lee, Bae-Keun;Jang, Ji-Deok;Park, Tae-Jin;Choi, Tae-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.232-239
    • /
    • 2018
  • Our study aims to provide a guideline of deer-proof fence heights to prevent roadkill of water deer (Hydropotes inermis), the most frequently killed by a vehicle collision, in South Korea. With 27 water deer in deer ecology center of the National Institute of Ecology, we measured the ability of water deer to jump gradually higher fences from 0.5cm by 10cm until the deterrence rate reached 100%. Ourresultrevealed that the deterrence rate became 96.7% at the fence height of 1.5m and the rate reached 100% at the 1.8m. We believe that our result provides the fundamental information to prepare a standard of deer-proof fence height. This evidence-based standard will contribute to improving the guideline for wildlife crossing construction and management, established by Ministry of Environment Korea.

A Study on the Change Detection of Multi-temporal Data - A Case Study on the Urban Fringe in Daegu Metropolitan City - (대도시 주변지역의 토지이용변화 - 대구광역시를 중심으로 -)

  • 박인환;장갑수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The purpose of this article is to examine land use change in the fringe area of a metropolitan city through multi-temporal data analysis. Change detection has been regarded as one of the most important applications for utilization of remotely sensed imageries. Conventionally, two images were used for change detection, and Arithmetic calculators were generally used on the process. Meanwhile, multi-temporal change detection for a large number of images has been carried out. In this paper, a digital land-use map and three Landsat TM data were utilized for the multi-temporal change detection Each urban area map was extracted as a base map on the process of multi-temporal change detection. Each urban area map was converted to bit image by using boolean logic. Various urban change types could be obtained by stacking the urban area maps derived from the multi-temporal data using Geographic Information System(GIS). Urban change type map was created by using the process of piling up the bit images. Then the urban change type map was compared with each land cover map for the change detection. Dalseo-gu of Daegu city and Hwawon-eup of Dalsung-gun, the fringe area of Daegu Metropolitan city, were selected for the test area of this multi-temporal change detection method. The districts are adjacent to each other. Dalseo-gu has been developed for 30 yeais and so a large area of paddy land has been changed into a built-up area. Hwawon-eup, near by Dalseo-gu, has been influenced by the urbanization of Dalseo-gu. From 1972 to 1999, 3,507.9ha of agricultural area has been changed into other land uses, while 72.7ha of forest area has been altered. This agricultural area was designated as a 'Semi-agricultural area'by the National landuse Management Law. And it was easy for the preserved area to be changed into a built-up area once it would be included as urban area. Finally, the method of treatment and management of the preserved area needs to be changed to prevent the destruction of paddy land by urban sprawl on the urban fringe.

Safety Management of Steel Pipe Scaffold using UAV (무인항공기(UAV)를 활용한 건설현장 가시설물 안전관리)

  • Jun, Byong-Hee;Kim, Nam-Gyun;Jun, Kyo-Won;Choi, Bong-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.59-67
    • /
    • 2019
  • In this study, the UAV (Unmammed Aerial Vehicle) was applied for the photogrammetry of the construction site and the safety management of steel pipe scaffold. The research site is a temporary facility for building reinforcement on Samcheok Campus of Kangwon National University. The installation condition of the steel pipe scaffold was investigated, and the pillar distance, the beam distance and the wale distance were surveyed. As a result, it was found that the beam distance of the scaffold in the longitudinal direction was in good agreement with the standard, but the pillar distance and the wale distance were found to be less than the standard. Three-dimensional data can be used in drone shooting to enable three-dimensional measurement, so that it is possible to measure facilities hidden or located inside other facilities. Through the drone shooting, the condition of the site can be quickly recorded and the surveying can be carried out without interfering with the work of the field personnel. Although the installation of the temporary structure must be strictly observed to ensure the safety of the workers, it is found that the installation standards are still neglected in the field. In order to prevent this practice, it was thought that the legal system should be supplemented so that it could be checked periodically by using UAV in the field process management.

A Case Study on the Management System of World Natural Heritage in Japan (일본의 세계자연유산 관리 체계에 관한 사례 연구)

  • Lee, Chang-Hun;Park, Jin-Wook
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.142-151
    • /
    • 2020
  • This study is designed to deduce an implication for an effective implementation of the Special Act for Conservation, Management and Utilization of World Heritage in Korea which was legislated in February, 2020. To draw an implication, which is regarded as highly valuable for preparing for the implementation of the act, several case studies were performed focusing on four World Natural Heritage sites in Japan, and the result is as follows. First, it is enormously crucial for the central administration agencies and the local government to have a system through which they communicate one another regularly. All the target areas in Japan consist of three national parks and a prefectural park with natural monuments, and the national forest covers a tremendously large proportion of the areas. The Japanese central agencies including Ministry of the Environment, Forestry Agency and Agency for Cultural Affairs have communication with the local government through a system named Regional Liaison Committee in order to manage the sites effectively. Also, in the case of Japan, de facto administrating agencies involving non-profit organizations and the tourism association also participate in the regular conferences to communicate. Second, a specific committee consisting of academic advisers is strongly needed. In the case of Japan, Scientific Committee provides academic grounds for the management plan established by the members of Regional Liaison Committee, and an active system which allows the members to organize consultative committees and subcommittees has been established. Scientific Committee plays an important role in preventing the local government, which tends to manage the world natural heritage in more economically profitable ways, from damaging the environment of the site. The establishment of this type of committee is thought to be extremely desirable because the World Natural Heritage requires comprehensive and sustainable management plans on the ecosystem. Third, establishment of comprehensive management plan based on continuous monitoring on the environment and detailed action plan is exceedingly needed. To sum up, it is vital to establish a management plan considering environmental aspect, and detailed guidelines, which help execute the plan both properly and effectively, are required for systematic and sustainable management.

Comparison of the Weather Station Networks Used for the Estimation of the Cultivar Parameters of the CERES-Rice Model in Korea (CERES-Rice 모형의 품종 모수 추정을 위한 국내 기상관측망 비교)

  • Hyun, Shinwoo;Kim, Tae Kyung;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.122-133
    • /
    • 2021
  • Cultivar parameter calibration can be affected by the reliability of the input data to a crop growth model. In South Korea, two sets of weather stations, which are included in the automated synoptic observing system (ASOS) or the automatic weather system (AWS), are available for preparation of the weather input data. The objectives of this study were to estimate the cultivar parameter using those sets of weather data and to compare the uncertainty of these parameters. The cultivar parameters of CERES-Rice model for Shindongjin cultivar was calibrated using the weather data measured at the weather stations included in either ASO S or AWS. The observation data of crop growth and management at the experiment farms were retrieved from the report of new cultivar development and research published by Rural Development Administration. The weather stations were chosen to be the nearest neighbor to the experiment farms where crop data were collected. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to calibrate the cultivar parameters for 100 times, which resulted in the distribution of parameter values. O n average, the errors of the heading date decreased by one day when the weather input data were obtained from the weather stations included in AWS compared with ASO S. In particular, reduction of the estimation error was observed even when the distance between the experiment farm and the ASOS stations was about 15 km. These results suggest that the use of the AWS stations would improve the reliability and applicability of the crop growth models for decision support as well as parameter calibration.