• Title/Summary/Keyword: Nastran

Search Result 394, Processing Time 0.021 seconds

Investigation on Forced Vibration Behavior of Composite Main Wing Structure of A Small Scale WIG Craft Excited by Engine and Propeller (엔진 및 프로펠러에 의해 가진되는 소형 위그선 복합재 주날개의 진동 거동 해석)

  • Kong, Chang-Duck;Yoon, Jae-Huy;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1028-1035
    • /
    • 2007
  • this study, forced vibration analysis was performed on the composite main wing structure of a small scale WIG craft which is equipped two-stroke pusher type reciprocating engine. The structural vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs.

Subsonic Flutter Experiment and Analysis of Flat Plate Wing (평판 날개의 아음속 플러터 실험 및 해석)

  • Bae, Jae-Sung;Kim, Jong-Yun;Yang, Seung-Man;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.56-61
    • /
    • 2002
  • Experimental flutter test for a flat plate wing is performed and the flutter analysis methods are verified by comparing with the experimental results. Wing model and experimental equipment are established in the subsonic wind-tunnel. From the response of the wing, the flutter speed is estimated by using the system identification technique. MSC/NASTRAN, V-g method and root-locus method are used for the flutter analysis of the wing. The computed flutter speed is compared with the estimated one from the experiment, and they show good agreement. Wing model in the present study can be used as a benchmark model for the flutter analysis.

A Study on Composite Blades of 1 MW Class HAWT Considering Fatigue Life (피로수명을 고려한 1 MW급 수평축 풍력터빈 복합재 블레이드 설계에 관한 연구)

  • Kim, Min-Woong;Kong, Chang-Duk;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.564-573
    • /
    • 2012
  • In this work, 1 MW class horizontal axis wind turbine blade configuration is properly sized and analyzed using the newly proposed aerodynamic design procedure and the in-house code developed by authors, and its design results are verified through comparison with experimental results of previously developed wind turbine blade. The structural design of the wind turbine blade is carried out using a composite materials and the netting and rule of mixture deign methods. The structural safety of the designed blade structure is investigated through the various load cases, stress, deformation, buckling and vibration analyses using the commercial FEM code, MSC.NASTRAN. Finally the required fatigue life is investigated using the modified Spera's experimental equation.

Global Ship Vibration Analysis by Using Distributed Fluid Added Mass at Grid Points (유체부가수질량 절점분포 방법에 의한 전선진동해석)

  • Kim, Young-Bok;Choi, Moon-Gil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • Recently, the ship vibration analysis technique has been well set up by using FEM. The methods considering the hydrodynamic added mass and damping of the fluid surrounding a floating ship have been well developed, so that they can be calculated by using the commercial package FEM programs such as MSC/NASTRAN, ADINA and ANSYS. Especially, MSC/NASTRAN has the functions to consider the fluid in tanks(MFLUID) and to solve the Fluid-Structure Interaction(FSI) problem(DMAP). In this study, the global ship vibration with considering the added mass distributed at the grid points on the wetted shell surface is introduced to. In the new method, the velocity potentials of the fluid surrounding a floating ship are calculated by solving the Lapalce equation using the Boundary Element Method(BEM), and the point mass is obtained by integrating the potentials at the points. Then, the global vibration analyses of the ship structure with distributed added mass on the wetted surface are carried out for an oil/chemical tanker. During the future sea trial, the results will be confirmed by measurement.

Study on Flow Property and Structural Analysis of Gas Generator Oxidizer On/Off Valve (가스발생기 산화제 개폐밸브의 내부 유동특성 및 구조해석에 관한 연구)

  • Lee, Jongl-Yul;Huh, Hwan-Il;Ahn, Yang-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.48-55
    • /
    • 2009
  • The purpose of using Gas Generator Oxidizer On/Off Valve(GOV) is to control opening and closing of oxidizer mass flow. This paper describes analytical results of flow and structural properties for four different GOV models, using commercial software such as Fluent(Ver. 6.3.26) and NASTRAN(2005 r.2), PATRAN(2005 r.2). Analytical results show that GOVs could generate 2.3~3.8 kg/s of oxidizer mass flow rate and come up with 1.09~1.42 of safety factor.

Development of a Direct Structural Analysis System for Floating Type Ocean Structures (부유식 해양구조물의 직접구조해석 시스템 개발)

  • Seong-Whan Park;Jeong-Youl Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.46-53
    • /
    • 1998
  • The aim of the present study is to develop a direct structural analysis system for more reliable and effective structural safety estimation of floating tripe ocean structures. In this system, the following three modules are included; i.e., a rigid body motion analysis module based on the three dimensional panel method, a structural analysis module, and a stochastic analysis module based on short and long term spectral analysis techniques. The structural analysis module consists of the general purpose finite element analysis program NASTRAN and the automatic load data generation program LOADGEN. As an illustrative example, the developed system is applied to structural design of a PILOT Barge Mounted Plant(BMP). Results of the structural analysis are compared with those obtained using a two dimensional strip method.

  • PDF

A Study on the Results of the Pressure Vessel Design, Structural Analysis, and Pressure Test of the Semi-Autonomous Underwater Vehicle (SAUV) (복합재 반자율 무인잠수정(SAUV)의 내압선체 설계, 구조해석 및 내압시험 결과에 관한 검토)

  • JOUNG TAE-HWAN;LEE CHONG-MOO;HONG SEOK-WON;KIM JIN-BONG;AN CHIN-WOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.52-58
    • /
    • 2004
  • A Semi-Autonomous Underwater Vehicle (SAUV), capable of simple work on the seabed, is under development in KRISO-KORDI. This SAUV pressure vessel is composed of fiberglass reinforced plastic (FRP), and is also manufactured to carry electronic equipment. The objective of this paper is to describe the safety check for the pressure vessel. This is achieved fly conducting structural analysis and testing in a pressure tank. Strain and stress test results, under unit load, are obtained fly using ANSYS in linear structural analysis. Local buckling analysis are performed with NASTRAN at the middle oj the cylindrical hull. The first test, using linear structural analysis, is unsuccessful, as buckling occurred. During the second test, linear structural analysis, combined with local buckling analysis, is conducted. There is no buckling up to 250 m when both ANSYS and NASTRAN are used.

Vibration Analysis of Pretwisted Composite Plates with Embedded Viscoelastic Core using Zig-Zag Triangular Finite Element (지그재그 삼각형 유한요소를 이용한 점탄성물질이 심어진 비틀린 복합재료판의 진동해석)

  • Lee,Deok-Gyu;Jo,Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • A three node triangular element with drilling rotations incorporating improved higher-order zig-zag theory(HZZT) is developed to analyze the vibration of pretwisted composite plates with embedded damping layer. Shear force matching conditions are enforced along the interfaces between the embedded damping patch and the border patch by matching the shear forces of the embedded damping patch to the shear forces of the adjacent border patch. The natural frequencies and modal loss factors are calculated for cantilevered pretwisted composite blade with damping core with the present triangular element, and compared to experiments and MSC/NASTRAN using a layered combination of plate and solid elements.

Optimization of Sandwich Structures of a Small Aircraft Wing using Automated Aero- Structure Interaction Systems (자동화된 공력-구조 연계 시스템을 이용한 소형항공기 날개 샌드위치구조 최적설계)

  • Park, Chan Woo;Chu, Jae Myeong;Shul, Chang Won;Jun, Seung Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1061-1068
    • /
    • 2013
  • In this research, the design optimization of a composite sandwich has been performed for using as an airplane wing skin. Automated analysis framework for aero-structure interaction is used for calculating load data on the wing. For automated analysis framework, FLUENT is used for computational fluid dynamics (CFD) analysis. CFD mesh is generated automatically by using parametric modeling of CATIA and GAMBIT. A computational structure mechanics (CSM) mesh is generated automatically by the parametric method of the CATIA and visual basic script of NASTRAN-FX. The structure is analyzed by ABAQUS. Composite sandwich optimization is performed by NASTRAN SOL200. Design variables are thicknesses of the sandwich core and composite skin panel plies. The objective is to minimize the weight of the wing and constraints are applied for wing tip displacement, global failure index and local failure indexes.

Structural Analysis of the Lower Frame in the Multi-aerial Platform (복합굴절차의 하부 프레임에 대한 구조해석)

  • Kang, Sung-Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.69-75
    • /
    • 2015
  • This research focuses on structural stability of the multi-aerial platform. In this study, we conduct structural analysis for the lower structures such as sub frame, out-trigger and chassis frame, by using a universal structural analysis program NASTRAN based on 3D CAD data, material properties, load conditions and boundary conditions. We confirm the position of local stress exceeding the yield strength, through structural analysis of 4 cases for load conditions. As the results, it is possible to relax stress concentration in a way such as changing the thickness, reinforcing the material of the lower frames.