• Title/Summary/Keyword: Nash Model

Search Result 420, Processing Time 0.023 seconds

A Study on the determination of the optimal resolution for the application of the distributed rainfall-runoff model to the flood forecasting system - focused on Geumho river basin using GRM (분포형 유역유출모형의 홍수예보시스템 적용을 위한 최적해상도 결정에 관한 연구 - GRM 모형을 활용하여 금호강 유역을 중심으로)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • The flood forecasting model currently used in Korea calculates the runoff of basin using the lumped rainfall-runoff model and estimates the river level using the river and reservoir routing models. The lumped model assumes homogeneous drainage zones in the basin. Therefore, it can not consider various spatial characteristics in the basin. In addition, the rainfall data used in lumped model also has the same limitation because of using the point scale rainfall data. To overcome the limitations as mentioned above, many researchers have studied to apply the distributed rainfall-runoff model to flood forecasting system. In this study, to apply the Grid-based Rainfall-Runoff Model (GRM) to the Korean flood forecasting system, the optimal resolution is determined by analyzing the difference of the results of the runoff according to the various resolutions. If the grid size is to small, the computation time becomes excessive and it is not suitable for applying to the flood forecasting model. Even if the grid size is too large, it does not fit the purpose of analyzing the spatial distribution by applying the distributed model. As a result of this study, the optimal resolution which satisfies the accuracy of the bsin runoff prediction and the calculation speed suitable for the flood forecasting was proposed. The accuracy of the runoff prediction was analyzed by comparing the Nash-Sutcliffe model efficiency coefficient (NSE). The optimal resolution estimated from this study will be used as basic data for applying the distributed rainfall-runoff model to the flood forecasting system.

Loganin Prevents Hepatic Steatosis by Blocking NLRP3 Inflammasome Activation

  • Joo Hyeon Jang;Gabsik Yang;Jin Kyung Seok;Han Chang Kang;Yong-Yeon Cho;Hye Suk Lee;Joo Young Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.40-47
    • /
    • 2023
  • Activation of the NLRP3 inflammasome is a necessary process to induce fibrosis in nonalcoholic fatty liver disease (NAFLD). Nonalcoholic steatohepatitis (NASH) is a kind of NAFLD that encompasses the spectrum of liver disease. It is characterized by inflammation and ballooning of hepatocytes during steatosis. We tested whether inhibiting the NLRP3 inflammasome could prevent the development and pathology of NASH. We identified loganin as an inhibitor of the NLRP3 inflammasome and investigated whether in vivo administration of loganin prevented NASH symptoms using a methionine-choline deficient (MCD) diet model in mice. We found that loganin inhibited the NLRP3 inflammasome activation triggered by ATP or nigericin, as shown by suppression of the production of interleukin (IL)-1β and caspase-1 (p10) in mouse primary macrophages. The speck formation of apoptosisassociated speck-like protein containing a caspase recruitment domain (ASC) was blocked by loganin, showing that the assembly of the NLRP3 inflammasome complex was impaired by loganin. Administration of loganin reduced the clinical signs of NASH in mice fed the MCD diet, including hepatic inflammation, fat accumulation, and fibrosis. In addition, loganin reduced the expression of NLRP3 inflammasome components in the liver. Our findings indicate that loganin alleviates the inflammatory symptoms associated with NASH, presumably by inhibiting NLRP3 inflammasome activation. In summary, these findings imply that loganin may be a novel nutritional and therapeutic treatment for NASH-related inflammation.

A Comparative Study of Linear-Nonlinear Flood Runoff Models. (선형-비선형 홍수유출모델의 비교연구)

  • 이순택;이영화
    • Water for future
    • /
    • v.19 no.3
    • /
    • pp.267-276
    • /
    • 1986
  • This study aims at the development of flood runoff model by comparing and analyzing nonlinear models with linear models in rier basins. The models which are used at the analysis are Nash model and Runoff function method as linear models, and Tank model and Storage function method as nonlinear models. The results, which are obtained from the analysis of these models by using hydrologic data of a representative basin in Nakdong river, Wi-chun basin, show that the peak time, peak flow and flood hydrogrphs by nonlinear models are better than those by linear models in comparison with observed ones, and that nonlinear models are suittable as flood runoff model.

  • PDF

The optimal parameter estimation of storage function model based on the dynamic effect (동적효과를 고려한 저류함수모형의 최적 매개변수 결정)

  • Kim Jong-Rae;Kim Joo-Cheal;Jeong Dong-Kook;Kim Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.593-603
    • /
    • 2006
  • The basin response to storm is regarded as nonlinearity inherently. In addition, the consistent nonlinearity of hydrologic system response to rainfall has been very tough and cumbersome to be treated analytically. The thing is that such nonlinear models have been avoided because of computational difficulties in identifying the model parameters from recorded data. The parameters of nonlinear system considered as dynamic effects in the conceptual model are optimized as the sum of errors between the observed and computed runoff is minimized. For obtaining the optimal parameters of functions, the historical data for the Bocheong watershed in the Geum river basin were tested by applying the numerical methods, such as quasi-linearization technique, Runge-Kutta procedure, and pattern-search method. The estimated runoff carried through from the storage function with dynamic effects was compared with the one of 1st-order differential equation model expressing just nonlinearity, and also done with Nash model. It was found that the 2nd-order model yields a better prediction of the hydrograph from each storm than the 1st-order model. However, the 2nd-order model was shown to be equivalent to Nash model when it comes to results. As a result, the parameters of nonlinear 2nd-order differential equation model performed from the present study provided not only a considerable physical meaning but also a applicability to Korean watersheds.

A Derivation of a Hydrograph by Using Smoothed Dimensionless Unit Kernel Function (평활화된 무차원 단위핵함수를 이용한 단위도의 유도)

  • Seong, Kee-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.559-564
    • /
    • 2008
  • A practical method is derived for determining the unit hydrograph and S-curve from complex storm events by using a smoothed unit kernel approach. The using a unit kernel yields more convenient way of constructing a unit hydrograph and its S-curve than a conventional method. However, with use of real data, the unit kernel oscillates and is unstable so that a unit hydrograph and S-curve cannot easily obtained. The use of non-parametric ridge regression with a Laplacian matrix is suggested for deriving an event averaged unit kernel which reduces the computational efforts when dealing with the Nash instantaneous unit hydrograph as a basis of the kernel. A method changing the unit hydrograph duration is also presented. The procedure shown in this work will play an efficient role when any unit hydrograph works is involved.

An Oligopoly Spectrum Pricing with Behavior of Primary Users for Cognitive Radio Networks

  • Lee, Suchul;Lim, Sangsoon;Lee, Jun-Rak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1192-1207
    • /
    • 2014
  • Dynamic spectrum sharing is a key technology to improve spectrum utilization in wireless networks. The elastic spectrum management provides a new opportunity for licensed primary users and unlicensed secondary users to efficiently utilize the scarce wireless resource. In this paper, we present a game-theoretic framework for dynamic spectrum allocation where the primary users rent the unutilized spectrum to the secondary users for a monetary profit. In reality, due to the ON-OFF behavior of the primary user, the quantity of spectrum that can be opportunistically shared by the secondary users is limited. We model this situation with the renewal theory and formulate the spectrum pricing scheme with the Bertrand game, taking into account the scarcity of the spectrum. By the Nash-equilibrium pricing scheme, each player in the game continually converges to a strategy that maximizes its own profit. We also investigate the impact of several properties, including channel quality and spectrum substitutability. Based on the equilibrium analysis, we finally propose a decentralized algorithm that leads the primary users to the Nash-equilibrium, called DST. The stability of the proposed algorithm in terms of convergence to the Nash equilibrium is also studied.

Improvement of Nash's instantaneous unit hydrograph model for estimating design flood of ungauged mid-/small watersheds (미계측중소유역에서의 설계홍수량산정을 위한 Nash 순간단위도모델 개선)

  • Kang, Boo-Sik;Kim, Jong-Min;Kim, Jin-Gyeom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.946-946
    • /
    • 2012
  • 현재 국내 하천의 설계홍수량은 하천정비 기본계획이나 유역종합 치수계획 등을 통하여 고시 되고 있다. 이러한 설계홍수량은 홍수량 산정 지침에 따라 산정되며, 최종적으로 결정된 설계홍수량을 기준으로 하도계획이나 교량, 암거 등의 설계를 실시하였다. 현재 많은 수의 홍수조절용 다목적 댐과 강변저류지 등 각종 수리조작 구조물들이 축조되면서부터 홍수량을 시간별로 조절할 수 있게 되었지만, 미계측 유역에서는 유역의 유출량을 예측하기가 쉽지 않기 때문에 수리조작 구조물들의 효과를 예상하고 조작 및 운영방법을 결정하기 어려운 실정이다. 이러한 이유로, 본 연구에서는 미계측 유역 내 축조하는 수공 구조물의 최적 설계 및 운영방법 결정을 위하여 설계홍수량과 함께 합성단위도법을 적용한 수문곡선을 적용할 수 있도록 Nash 모형을 이용하였다. 유역의 유출특성이 반영된 대표단위도를 산정하기 위해 여러 유역의 다양한 형상계수를 이용하여, 도달시간과 첨두유량에 관한 회귀식을 산정하였다. 이렇게 산정된 회귀식을 여러 형태의 유역과 강우-유출 사상에 적용하여, 미계측 유역의 특정지점에서 발생의 개연성이 충분하고 수공구조물의 설계와 효과에 가장 중요하게 영향을 미칠 수 있는 설계홍수수문곡선을 도출하는 것을 목적으로 하였다. 본 연구의 결과로 나타나는 대표홍수수문곡선을 미계측 유역에 적용한다면 미지의 설계홍수량을 추정함과 동시에 설계홍수량에 상응하는 수문곡선을 도출하여 수공구조물 설계에 이용할 수 있을 것이라 기대한다.

  • PDF

The Effect of Heterogeneous Wage Contracts on Macroeconomic Volatility in a Financially Fragile Economy

  • Kim, Jongheuk
    • East Asian Economic Review
    • /
    • v.21 no.2
    • /
    • pp.167-197
    • /
    • 2017
  • I build a small open economy (SOE) dynamic stochastic general equilibrium (DSGE) model to investigate the effect of a heterogeneous wage contract between regular and temporary workers on a macroeconomic volatility in a financially fragile economy. The imperfect financial market condition is captured by a quadratic financial adjustment cost for borrowing foreign assets, and the labor market friction is captured by a Nash bargaining process which is only available to the regular workers when they negotiate their wages with the firms while the temporary workers are given their wage which simply equals the marginal cost. As a result of impulse responsesto a domestic productivity shock, the higher elasticity of substitution between two types of workers and the lower weight on the regular workers in the firm's production process induce the higher volatilities in most variables. This is reasoned that the higher substitutability creates more volatile wage determination process while the lower share of the regular workers weakens their Nash bargaining power in the contract process.

A Nash Bargaining Solution of Electric Power Transactions Reflecting Transmission Pricing in the Competitive Electricity Market (송전선이용료를 반영한 전력거래의 내쉬협상게임 해법)

  • Gang, Dong-Ju;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.311-316
    • /
    • 2002
  • It has been a basic model for the present electric power industry that more than two generators compete, and thereby the market clearing price and the generation schedules are determined through the bid process. In order for this paradigm to be applicable to real electric power systems and markets, it is necessary to reflect many physical and economic constraints related to frequency and transmission in the dispatching schedule. The paper presents an approach to deriving a Nash bargaining solution in a competitive electricity market where multiple generators are playing with the system operator who mitigates the transmission congestion to minimize the total transaction cost. In this study, we take the effect of the line flows and the role of system operator into the Game. Finally, a case study has been demonstrated to verify the proposed cooperative game.

Strategic Analysis of the Competition between Internet Seller and Conventional Retailer Selling Single Commodity (단일 상품을 판매하는 인터넷 상점과 전통적인 소매점 간의 경쟁에 대한 전략적 분석)

  • Cho, Hyung-Rae;Kwon, Hyo-Seok;Cha, Chun-Nam
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.4
    • /
    • pp.277-288
    • /
    • 2005
  • The proliferation of the internet technologies and applications has intensified business activities on the Internet. This study considered the price competition between two shopping channels, one on-line seller and the other traditional off-line retailer. Based on the Hotelling's linear market model, we derive the Nash and Stackelberg equilibria as a function of the cost parameters which represent the characteristics of the online and off-line channels. By analyzing the equilibrium solutions, the following significant findings were obtained. First, pricing by Stackelberg equilibrium always outperformed that of Nash equilibrium. However the value of the cost parameters played a crucial role in determining both channels' preferred position (price leader or follower). Second, the online seller could benefit more in terms of profit by lowering its efficiency when its efficiency belongs to a certain interval. Third, when the online seller's efficiency is low, lowering its delivery cost has no contribution to its profit. To benefit more from lowering its delivery cost, increasing its channel efficiency to a certain level should be preceded.