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Abstract 
 

Dynamic spectrum sharing is a key technology to improve spectrum utilization in wireless 
networks. The elastic spectrum management provides a new opportunity for licensed primary 
users and unlicensed secondary users to efficiently utilize the scarce wireless resource. In this 
paper, we present a game-theoretic framework for dynamic spectrum allocation where the 
primary users rent the unutilized spectrum to the secondary users for a monetary profit. In 
reality, due to the ON-OFF behavior of the primary user, the quantity of spectrum that can be 
opportunistically shared by the secondary users is limited. We model this situation with the 
renewal theory and formulate the spectrum pricing scheme with the Bertrand game, taking into 
account the scarcity of the spectrum. By the Nash-equilibrium pricing scheme, each player in 
the game continually converges to a strategy that maximizes its own profit. We also 
investigate the impact of several properties, including channel quality and spectrum 
substitutability. Based on the equilibrium analysis, we finally propose a decentralized 
algorithm that leads the primary users to the Nash-equilibrium, called DST. The stability of the 
proposed algorithm in terms of convergence to the Nash equilibrium is also studied. 
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1. Introduction 

The rapid advance of mobile telecommunication has made wireless spectrum the scarcest 
resource in the last decade. However, the recent reports by the Federal Communications 
Commission (FCC), ironically, show that traditional fixed spectrum allocation results in very 
low efficiency in spectrum utilization. The increasing spectrum demand, together with 
under-utilization in currently allocated spectrum, raises a need for a new technology, called 
cognitive radio. Cognitive radio networks (CRNs) [1] enable dynamic spectrum access in 
which licensed (primary) users (PUs) share their unused spectrum with unlicensed (secondary) 
users (SUs). When the spectrum assigned to the primary user is not fully utilized, the primary 
user has an opportunity to sell the excessive spectrum to secondary users for monetary payoff 
[2]. In this model, PUs are opportunistic spectrum providers while SUs are the buyers of this 
spectrum. Therefore, it is natual to analyze the spectrum allocation in the persepective of 
economic models and market stratagies such as an auction [3] or game-theory [4].  
In such an emerging network scenario, multiple primary users can co-exist in the same 

geographical site and compete for the purchase of secondary users equipped with cognitive 
radios. Obviously, a meaningful problem for the spectrum trading is how the primary users set 
prices of per-unit spectrum in a competitive spectrum market. For example, when a primary 
user sets a low price, the primary user may lose possible revenue (by increasing price). In 
contrast, if the price is too expensive, secondary users may be willing to purchase other 
spectrum from other primary users. Niyato et al [5] firstly presented the spectrum pricing 
game within the Bertrand model in which prices offered by primary users are competitively 
determined. On the other hands, our analytical model further takes into account the behavioral 
patterns of PUs. For example, two 20MHz channels, say CA and CB, can be utilized for twenty 
minutes. If CA is available for continuous 20 minutes while CB is not (e.g., often interrupted by 
PU itself), the model needs a mechnism that incorporates this criterion. Indeed, this behavior 
of PUs is a commonly considered feature [6] in the research field of CRNs.  
In this paper, we model dynamic spectrum pricing in CRNs with an oligopoly spectrum 

trading game [7]. Unlike previous work [5][8], we focus our attention to the PUs’ behavioral 
patterns and incorporate them in our analytical framework. In order to quantify the relative 
superiority of one channel to another, we adopt a renewal process [9] to model the ON-OFF 
behavior of PUs. In the oligopoly spectrum market, we employ a commonly used quadratic 
utility function to quantify the spectrum demand of secondary users, and the strategy of each 
primary user is analyzed under the utility function. To incorporate the behavioral model, a 
common principle borrowed from the law of supply and demand is adopted. As the price of a 
good goes up, consumers demand less of it. If the demand from the secondary users exceeds 
the contiguous available spectrum, the primary user can increase the price so that the demand 
falls off. We extend the demand function of the secondary users by dividing the case into two 
counterparts; (i) when the PU can afford the spectrum and (ii) when the PU cannot afford the 
spectrum. We analyze the strategies under the two cases and find a static solution that makes 
the spectrum trading reach Nash-equilibrium. Assuming “Bounded Rationality”, we finally 
propose a decentralized algorithm that leads the primary users to the Nash-equilibrium, called 
DST (Decentralized Spectrum Trading). Also, the stability of the proposed algorithm is 
investigated using the Jacovian matrix method. Our decentralized algorithm, which is proven 
to be stable by the analysis as well as the simulation, converges to Nash equilibrium quickly. 
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Our major contributions are summarized as follows: 
 

 We model dynamic spectrum pricing in CRNs with an oligopoly spectrum trading 
game considering the PU’s ON-OFF behavior. 

 To characterize the behavior, we adopt a renewal process. Then we incorporate our 
behavioral model of the PU into the game framework.  

 We analyze the (Nash) equilibirum strategies under the proposed framework and 
find a static solution to the problem.  

 We devise a decentralized algorithm, called DST (Decentralized Spectrum Trading). 
Our algorithm stabily leads the primary users to the Nash-equilibrium. 

 
The rest of this paper is organized as follows. Section 2 reviews the related work. We then give 
our priliminaries in Section 3. We present the game-theoretic formulation in section 4 and 
Section 5 examines our analysis via the MATLAB numerical simulations. Finally, Section 6 
concludes the paper.  

2. Related Work 
Recently, a lot of work targeted toward solving the scarcity problem of wireless spectrum has 
been made. [1] introduces cognitive radio (CR) as a next generation technology to address this 
problem. The authors well-summarized the fundamemtal tasks and agile chracteristics of 
cognitive radio devices.  
Major issues on the CR research are categorized into 4-groups; (i) spectrum sensing, (ii) 
spectrum sharing, (iii) spectrum management, and (iv) spectrum mobility [10]. The spectrum 
sensing involves to a subject including how to explore the spectrum opportunities in the 
licensed primary band. Kim et al found an optimal spectrum sensing schedule, taking into 
account the behavior of a primary user. An another important issue on the spectrum sensing 
involves a physical method of sensing [11]. [11] gives a clear technological description on two 
kinds of spectrum sensing; the feature and the energy detection.  
Researchers have started to study how to effectively share the discovered spectrum 
opportunities. Game theory is one of the resource allocation techniques. It perfectly fits to 
reflect the selfish behavior of current wireless devices. The current devices compete for their 
maximal use of wireless spectrum, even they jam each other to hinder other communication on 
shared frequencies. There are many work on network research, applying the game theoretic 
approach (e.g., admission control, rate control [12], power control [13][14][15]). Particularly 
in the area of multiple radio and multiple channel (MRMC) research, adaptive channel 
allocation schemes [16][17] were proposed. 
In game theory, price is the fundamental and important criterion to model the value of  
wireless spectrum. In [18], a price-based transmission rate control scheme was proposed for 
wireless ad-hoc networks. An auction model [3] and an oligopoly market [7] are the examples 
of such pricing scheme, a specialized version of the game-framework. Specifically, The 
oligopoly market model is one of the popular price and quantity competition model in 
cognitive radio network [5][8]. The authors of [5][8] modeled the spectrum trading within the 
oligopoly market framework. The trading price of spectrum is determined based on the 
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secondary user’s preference for spectrum, in which the preference includes the channel quality, 
substitutability among the primary users, and QoS reguirements of primary users. 
Our work lies its basis on [7] and is similar with [5][8], however, the entended framework 
(with multiple, i.e., more than two users) and  the analysis on spectrum scarcity based on the 
PU’s behavioral pattern ensure to position our work into the state-of-the art research field of 
cognitive radios.  

3. Preliminaries 

3.1 System Model 
We consider a cognitive radio network where 𝑁 licensed (primary) users or wireless spectrum 
providers (WSPs) compete for a shared pool of secondary users. The secondary users can be 
any static/mobile devices equipped with cognitive transceivers. The primary users are the 
spectrum brokers that rent the unused spectrum frequency to the secondary users for monetary 
payoff. We depict the spectrum market in Fig. 1. The primary users treat the set of secondary 
users as a spectrum consumer. Each primary user sells an unused portion of its spectrum (e.g., 
time slots in TDMA based wireless system) to the market at price 𝑝𝑖 (i = 1, 2, … , N). In this 
market, the demand of secondary users depends on the prices of per-unit spectrum. Each 
primary user chooses its own strategy 𝑝𝑖 to induce the subscription of the secondary users.  
 
 

 
Fig. 1. Spectrum Market Trading Model 
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Fig. 2. The alternating semi-Markov chain 

3.2 PU’s Channel Usage Model  
Channel usage of a primary user can be modeled as an ON-OFF state semi-Markov chain, 
alternating between ON (busy) and OFF (idle) periods as depicted in Fig. 2. We assume a 
periodic sensing mechanism [6]. We also assume that the secondary users co-operate in 
spectrum sensing. Channel trading is taken place at each sensing time.  
For channel 𝑖 (i = 1,2, … ,𝑁), let 𝑇𝑂𝐹𝐹𝑖  denote a random variable for an OFF period of channel 
𝑖 , and its probability density function (p.d.f.) is 𝑓𝑇𝑂𝐹𝐹𝑖 (x), x > 0 . Similarly, let 𝑇𝑂𝑁𝑖  be a 
random variable for an ON-period of channel 𝑖. The ON-OFF periods are assumed to be 
independent and identically distributed (i.i.d.). We do not assume that the ON-OFF periods 
follow any particular distribution. Because the behavior of primary users alternates between 
the ON-OFF periods, we can analyze it with alternating renewal theory [9].  

3.3 Bertrand Game Model  
In economics, an oligopoly is a market in which a number of firms compete each other 
non-cooperatively to maximize their profit. The profit (revenue) is generated by selling a 
product to the market. The demand (i.e., the trading quantity of the product) from buyers 
depends on the prices set by the competing firms. Thus we have two options to control the 
market competition. In the Bertrand game, the sellers handle the market by setting prices. In 
contrast, in the Cournot game, the market is controlled in the view point of buyers. We apply 
the Bertrand game model to analyze the behavior of wireless spectrum provider (WSP) and to 
propose a distributed scheme for a primary user in cognitive radio networks.  

4. Price Competition and Nash Equilibrium  

4.1 A Utility Function of Secondary Users 
We characterize the spectrum demands of secondary users in the oligopoly market. Let 𝑞𝑖 be 
the quantity of spectrum that secondary users buy from primary user 𝑖 at price 𝑝𝑖. In order to 
model the utility of an average secondary user, we employ the following commonly used 
quadratic utility function [7]:  
 

𝐔(𝐪) =  �𝛼𝑖𝑞𝑖 −
1
2
��𝛽𝑖𝑞𝑖2 + 2𝛾�𝑞𝑖𝑞𝑗

𝑗≠𝑖

𝑁

𝑖=1

�
𝑁

𝑖=1

 

(1) 
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where 𝛼𝑖 and 𝛽𝑖 are positive constants for all 𝑖 ∈ 𝑁. Here, 𝛼𝑖 denotes the spectral efficiency 
of channel 𝑖 when a secondary user uses it as a channel access medium.  For example, channel 
variations such as path loss, fading, and Doppler effect can be properly taken into account. In 
wireless communications, the above wireless characteristics may determine the instantaneous 
signal-to-noise ratio (SNR). In addition, the data transmission rate is basically controlled by 
the instantaneous SNR. Therefore, we incorporate the instantaneous SNR into our utility 
function. The spectral efficiency 𝛼𝑖 of a transmission by a secondary user using channel 𝑖 can 
be obtained from [5]: 
 

𝛼𝑖 = log2(1 + 𝐾𝜎), where 𝐾 = 1.5
ln(0.2/BERtar) 

(2) 
where σ is the SNR at the receiver and BERtar is the target bit-error-rate (BER). 
Similar to previous work [5][8], we also consider the spectrum substitutability via the 
parameter µ. Suppose γ = 0, then a secondary user cannot switch among the primary users. 
However, 0 < γ < 𝛽𝑖, a secondary user can switch among the primary users based on the 
spectrum preferences such as the spectral efficiency, the price of per-unit spectrum. For 
example, if one primary user increases its price, some of the secondary users may move to 
other channels instead of using the channel consistently. In particular, when 𝛼𝑖 =  α and 
𝛽𝑖 =  𝛾 for all 𝑖 ∈ 𝑁, the spectra of primary users are perfectly substitutive for secondary 
users. The most important property of the utility function is its concavity. Thus, we can 
incorporate the basic principle of the law of supply and demand with this utility function.  
To obtain the purchase price (𝑝𝑖) of secondary users for channel 𝑖, we take the first-order 
derivative of the utility functions with respect to 𝑞𝑖 and let it be 0: 
 

𝑝𝑖 = 𝛼𝑖 − 𝛽𝑖𝑞𝑖 − 𝛾�𝑞𝑗
𝑗≠𝑖

 

(3) 
We now derive the demand of secondary users using eq. (3): 
 

𝛼𝑖 −  𝑝𝑖 = 𝛽𝑖𝑞𝑖 + 𝛾�𝑞𝑗
𝑗≠𝑖

 

(3)′ 
By extending eq. (3)′ for all 𝑖 ∈ 𝑁, we obtain: 
 

�
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⋮
𝛼𝑁
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(4) 
By multiplying the inverse matrix of the constants, we get: 
 

q = �

𝛽1 𝛾
𝛾 𝛽2

… 𝛾
… 𝛾

⋮ ⋮
𝛾 𝛾
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… 𝛽𝑁

�

−1

��

𝛼1
𝛼2
⋮
𝛼𝑁

� − p� 

(5) 
where 𝐩 is the price vector and 𝐪 is the spectrum demand vector. Given the price vector, the 
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demand of secondary users for channel 𝑖 is rewritten by:  
 

𝑞𝑖 = 𝑎𝑖 − 𝑏𝑖𝑝𝑖 + �𝑐𝑖𝑗𝑝𝑗
𝑗≠𝑖

 

(6) 
where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖𝑗 are positive constants derived from equ. (5). Obviously, they represents 
the spectral efficiency and the subsitituability.  

4.2 Analysis of PU’s Behavior 

available(sojourn-time) unavailable

Time ts Time ts+Tp
OFFàON

(detectable)
ONàOFF

(undetectable)

 
Fig. 3. The channel usage model and available sojourn-time for secondary users. 

 
In this section, we explain how to compute the sojourn-time for secondary users using the 
alternating renewal theory. We describe an example of the spectrum sensing in Fig. 3. Note 
that we assume proactive and periodic sensing. Let 𝑇𝑝 be the sensing period of the secondary 
users. Since spectrum sensing is nothing but a sampling process, it is possible to identify each 
state only (ON or OFF state) at each sensing time (𝑡𝑠, 𝑡𝑠 + 𝑇𝑝, 𝑡𝑠 + 2𝑇𝑝, … ). In addition, 
secondary users cannot detect the ON→OFF state transition. Thus the time between the start 
time of the OFF period and the discovery time (sensing occurs 𝑡𝑠 + 𝑇𝑝 in Fig. 3) of the OFF 
period cannot be utilized (marked as unavailable in Fig. 3). In this way, some OFF periods 
may remain totally undiscovered at all if sensing is infrequent. On the other hand, secondary 
users can figure out the return of primary users (the OFF→ON state transition). It can be taken 
place by the ‘listen-before-talk’ policy of the secondary users. This is particularly important 
because primary communication must not be interrupted by secondary users. Thus the 
secondary users can only utilize the time from the sensing time of the OFF period to the 
OFF→ON transition time or the next sensing time if the primary user does not return (marked 
as available in Fig. 3).  
In this situation, secondary users may buy the spectrum that has the longest remaining time 
until the primary user’s return. This is particularly important as secondary user must switch to 
other channel when the current channel is not available. This may introduce a significant and 
frequent interruption of a secondary service, and even it imposes large spectrum sensing 
overhead because it needs frequent spectrum sensing. Therefore, we incorporate this 
behavioral feature of primary users into the spectrum pricing model.  
To analyze PU’s behavior, we use the alternating renewal theory. According to the renewal 
theory, for an alternating renewal process that has been started a long time ago, the remaining 
time 𝑥� in the current state (ON or OFF state) from the sensing time 𝑡𝑠 has its probability 
distribution function [9]: 
 

𝑓𝑥� =
1 − 𝐹(𝑥)
𝐸[𝑋]

 

(7) 
where 𝑥 denotes the time for OFF state, (or ON state), 𝐹(𝑥) is its cumulative distribution 
function, and E[X] is its expected value. With eq. (7), we rewrite the available opportunity 𝐿𝑖 
between two consecutive spectrum sensing for channel 𝑖, 𝑖 ∈ 𝑁: 
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𝐿𝑖 =  � 𝑥
1 − 𝐹𝑇𝑂𝐹𝐹𝑖 (𝑥)

𝐸[𝑇𝑂𝐹𝐹𝑖 ]
𝑑𝑥

𝑡𝑠+𝑇𝑝

𝑡𝑠
 

(8) 
  
We refer to 𝐿𝑖 as the “sojourn-time” of channel 𝑖 because secondary users can stay the channel 
for the duration of 𝐿𝑖.  
The sojourn-time can be considered as a maximal capacity of channel 𝑖. That is, if the demand 
from secondary users exceeds the sojourn-time, primary user i cannot offer the spectrum to 
secondary users. In this case, the rational decision for the primary user is to increase the price 
𝑝𝑖 for reducing the demand.  

4.3 Static Bertrand Game  
With aforementioned components of the game, we can formulate a Bertrand game as follows. 
The game players in the spectrum trading are primary users. The strategy of the player is to set 
the price of per-unit spectrum. The payoff is a profit of selling spectrum to secondary users. 
The spectrum demand of secondary users depends on the spectral efficiency and the channel 
substitutability, and the prices quoted by primary users. Also, it cannot exceed the 
sojourn-time. Note, since primary channels are heterogeneous, i.e., have different spectral 
efficiency, a smaller sojourn-time does not necessarily mean the spectrum limitation 
compared with a larger one (or unlimited one). The solution of the game is to set a pure 
strategy to reach Nash equilibrium. The profit of each primary user is given as the product of 
price 𝑝𝑖 and trading quantity 𝑞𝑖 of spectrum.  
 

𝜋𝑖 = 𝑝𝑖 × 𝑞𝑖 = −𝑏𝑖𝑝𝑖2 + �𝑎𝑖 + �𝑐𝑖𝑗𝑝𝑗
𝑗≠𝑖

�𝑝𝑖 

(9) 
The Nash equilibrium of the game is defined as a set of all players’ strategies with the property 
that no player can increase his payoff without changing other players’ strategies [19]. The best 
response function is defined as the best strategy of one player given others’ strategies. In 
particular, when other players choose the Nash equilibrium strategies best response against 
them is the Nash Equilibrium strategy. 
In order to mathematically derive Nash equilibrium of the game with the sojourn-time 
constraint, we have to find all capacity-insufficient primary users. Here, a primary user is 
capacity-insufficient if the sojourn-time is less than the best demand under no sojourn-time 
constraint. However, we may not be able to find the capacity-insufficient primary users once 
for all. The reason is that when capacity-insufficient primary users increase their prices of 
spectrum, some secondary users may buy the spectrum of other primary users, potentially 
leading to the lack of capacity in those primary users. Therefore, we need to search several 
time recursively to find all the capacity-insufficient primary users in the Nash equilibrium 
[20].  
Firstly, we compute the best response strategies of all primary users under no sojourn-time 
constraint. To compute those strategies, we have to solve the set of marginal profit function. 
The marginal profit function is the first-order partial derivative of the profit function with 
respect to 𝑝𝑖. Due to its concavity, we find the Nash equilibrium strategy of player 𝑖, by letting 
the derivative be 0. 
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𝑝𝑖 =
𝑎𝑖 +∑ 𝑐𝑖𝑗𝑝𝑗𝑗≠𝑖

2𝑏𝑖
 

(10) 
Note that eq. (10) does not consider the sojourn-time constraint. Denote 𝑀𝑘 to be the number 
of capacity-insufficient primary users in the 𝑘𝑡ℎ search. Assuming no sojourn-time constraints, 
we can obtain 𝑀1 by solving (10). Next, we take the capacities of 𝑀1 primary users into 
consideration. Because 𝑀1 primary users cannot afford the spectrum, they will increase their 
prices until the demand reaches their affordable spectrum, i.e., equal to the capacities of their 
spectrum. Thus we obtain the Nash equilibrium under the sojourn-time constraint by letting 
the demand and the sojourn-time constraint is equal. 
 

𝑝𝑖 =
𝑎𝑖 − 𝐿𝑖 + ∑ 𝑐𝑖𝑗𝑝𝑗𝑗≠𝑖

𝑏𝑖
 

(11) 
The remaining primary users increase the prices correspondingly. The best responses of 
primary users are obtained through the eq. (10) and eq. (11) for capacity-sufficient primary 
users and capacity-insufficient ones, respectively. We next define a new matrix with 𝑀1 as 
 

Q(𝑀1) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑏1    −𝑐12 ⋯ ⋯ ⋯ ⋯ −𝑐1𝑁
    −𝑐21 𝑏2 ⋯ ⋯ ⋯ ⋯ −𝑐2𝑁

⋮ ⋮ ⋯ ⋯ ⋯ ⋯ ⋮
−𝑐𝑀11 −𝑐𝑀12 ⋯ −𝑏𝑀1 ⋯ ⋯ −𝑐𝑀1𝑁
−𝑐𝑀1+1,1 −𝑐𝑀1+1,2 ⋯ ⋯ 2𝑏𝑀1+1 ⋯ −𝑐𝑀1+1,𝑁

⋮ ⋮ ⋯ ⋯ ⋯ ⋯ ⋮
     −𝑐𝑁1 −𝑐𝑁2 ⋯ ⋯ ⋯ ⋯ 2𝑏𝑁 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

(12) 
and a vector 
 

a(𝑀1) = [𝑎1 − 𝑞1𝑎 𝑎2 − 𝑞2𝑎 ⋯ 𝑎𝑀1 − 𝑞𝑀1
𝑎 𝑎𝑀1+1 ⋯ 𝑎𝑁]𝑇 

(13) 
Before advancing to the next iteration, we have to know whether Q(M1) is invertible or not. 
According to [8], the matrix Q(Mk) is positive definite if βi > γ > 0 for all i ∈ N in the utility 
function, which implies that the matrix Q(Mk) is invertible. Hence, we can rewrite each 
iterative search (i.e., 𝑘𝑡ℎ iteration) as follows 
 

p = Q(𝑀𝑘)−1a(𝑀𝑘) 
(14) 

An important question here is whether the iterative search method eventually ends or not 
within the finite number of iteration. Y. Xu et al [8] proved that eq. (14) leads the problem to 
the Nash equilibrium at most 𝑁 iterative steps.  

4.4 Dynamic Bertrand Game  
In reality, a primary user may not be able to observe the profit obtained by other primary users. 
Also, the current strategies adopted by other primary users may be unknown. Therefore, each 
primary user must learn the policies of other primary users from the history. We derive a 
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dynamic solution to find the Nash equilibrium with the assumption that the past strategies of 
players are observable each other.  
Let 𝑝𝑖𝑛 be the price offered by primary user 𝑖 at iteration 𝑛. Given the strategies adopted by 
other players at iteration 𝑛, (i.e., 𝑝−𝑖𝑛 ), the price offered by primary user 𝑖 can be obtained 
iteratively from: 
 

𝑝𝑖𝑛+1 = max �
𝑎𝑖 + ∑ 𝑐𝑖𝑗𝑝𝑗𝑗≠𝑖

2𝑏𝑖
,
𝑎𝑖 − 𝐿𝑖 + ∑ 𝑐𝑖𝑗𝑝𝑗𝑗≠𝑖

𝑏𝑖
� 

(15) 
The current strategies used by other primary users are actually unknown. Therefore, each 
primary user can use historical information and the spectrum demand from secondary users to 
adjust its strategy. This self-gradual learning under local information is a concept of “Bounded 
Rationality”. We propose a decentralized algorithm, called DST (Decentralized Spectrum 
Trading). The algorithm forces each player to reach the Nash equilibrium in a distributed 
manner. The algorithm incorporates two basic concepts; (i) the gradual-learning of a price 
increase based on local information and (ii) the stopping rule when the demand of spectrum 
reaches the maximal capacity (the sojourn-time). Algorithm I shows the pseudo code of our 
DST algorithm. 
 

 
In algorithm I, to estimate the partial derivation of the profit function, a primary user can 
observe the marginal spectrum demand for small variation in price ε as shown in eq. (16).  
 

∂𝜋𝑖
∂𝑝𝑖

≈
𝜋𝑖(𝐩−𝑖𝑛 ∪ {𝑝𝑖𝑛 + 𝜀}) − 𝜋𝑖(𝐩−𝑖𝑛 ∪ {𝑝𝑖𝑛 − 𝜀})

2𝜀
 

(16) 

4.5 Stability Analysis 
Stability investigation of the dynamic adjustment is an important task to prove the 
completeness of the algorithm in terms of convergence to the Nash equilibrium. We analyze 
the stability of our DST algorithm with the eigenvalue method of the Jacobian matrix consists 
of the self-mapping functions, i.e., eq. (15).  
By definition, self-mapping function is stable if and only if eigenvalues of the Jacobian matrix 
(denoted by 𝜆𝑖) are all inside unit circle in the Euclidian hyperspace (i.e., |𝜆𝑖| < 1). From the 
definition, the Jacobian matrix of this game is given by:  
 

Algorithm I Decentralized Spectrum Trading 
 1: for iteration n do 
 2:   for i ∈ N do 
 3:     /* compute price from local information */ 
 4:     𝑝𝑖𝑛+1 = 𝑝𝑖𝑛 + 𝛿𝑝𝑖𝑛

∂𝜋𝑖
∂𝑝𝑖

 

 5:    𝑞𝑖𝑛+1 ← Compute corresponding demand 
 6:    if 𝐿𝑖 ≥  𝑞𝑖𝑛+1 
 7:       𝑝𝑖𝑛+1 = 𝑝𝑖𝑛 
 8:    end if 
 9:  end for 
10:end for 
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(17) 
 
The analysis of the Jacobian matrix eigenvalues shows unconditional convergence to the Nash 
equilibrium with the assumption (i.e., past strategies of opponents are observable). However 
the convergence property of DST algorithm is not guaranteed. The property depends on the 
learning rate δ and the sojourn-time constraint. Proper choice of these variables results in the 
stability of DST algorithm.  

5. Performance Evaluation  

5.1 Evaluation Setup  
We consider a cognitive radio network with several primary users. Each primary user has its 
own 20MHz channel to lease (i.e., 𝑎𝑖 = 20). We also consider a market consists of many 
spectrum consumers (secondary users). We assume that the behavior of primary users follows 
a certain distribution. Note that it could be any distribution which can be expressed with a 
formal definition. In the numerical simulations, without loss of generality, we used the 
exponential distribution. The channel quality for the secondary users varies between 5 to 20 
dB, which is incorporated by the value 𝛼𝑖, 𝑖 ∈ 𝑁. We assume that the market has diverse 
freedom for spectrum purchasing. The substitutability values (𝛽𝑖, γ) represent the freedom and 
we used 𝛽𝑖 = 1, γ = [0.5, 1). The positive constants 𝑏𝑖 are computed from 𝛼𝑖, 𝛽𝑖, and γ. We 
choose 0.15 as the constant value for 𝑐𝑖𝑗. For DST algorithm, the initial prices are set as 
follows: 𝑝𝑖1 = 1, 𝑖 ∈ 𝑁. Note that some of these parameters will be varied according to the 
evaluation scenarios. 

5.2 Numerical Results  
Fig. 4 and Fig. 5 show the dynamics of prices and revenues, respectively. In this scenario, we 
do not incorporate any behavioral constraint. As a result, the prices can only be determined by 
the spectral efficiency and the substitutability among primary users. Since a primary user can 
observe only the spectrum demand from the secondary service, and the price is adjusted based 
on local information. Therefore, the speed of convergence depends largely on the learning rate. 
We depict one player’s price adjustment under varying learning rate values to show the impact 
of the learning rate in Fig. 6. As anticipated, if this learning rate is properly set, the algorithm 
converges to the equilibrium price as fast as that for the case when the strategies of the other 
players are observable. However, if the learning rate is set to too large values, we see the 
fluctuations in the price adaptation, and the algorithm may require a larger number of 
iterations to reach the equilibrium. Though we only used a particular set of the system 
parameters (i.e., 𝛼𝑖, 𝛽𝑖, and γ) in this paper, we confirmed that the price and the revenue are 
converged to Nash equilibrium in every single case. Numerical results show that our DST 
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algorithm makes the game players achieve the Nash equilibrium in the decentralized manner 
with a proper choice of the learning rate.  
Next, we intentionally impose the sojourn-time constraint on player 4 to observe the impact of 
the primary user’s behavior (Other parameters remain unchanged.). For the player 4, the 
demand from the secondary service (which is determined by set of the offered prices) exceeds 
the spectrum owner’s capacity; he will increase its price to decrease the demand. This 
adjustment will last until the spectrum demand reaches the capacity. That is the DST’s feature 
against in-sufficient capacity condition. Fig. 7 and Fig. 8 show the dynamics of prices and 
revenues, respectively under the primary users’ behavioral constraint. We observe that the 
player 4 (having in-sufficient spectrum to sell) increased its price to decrease the spectrum 
demand from the secondary service. In addition, we do not see any fluctuation. The previous 
version of our algorithm leads the change of strategy when reaching the capacity limit. In 
contrast, DST algorithm examines the arrival of its own capacity limit all the time. Hence, we 
do not see any fluctuation and need any further arbitration. In conclusion, numerical results 
show that our DST algorithm makes the game players achieve the Nash equilibrium given in 
the PU’s behavioral constraint as well.  

 
 

 
Fig. 4. Dynamics of prices under no sojourn-time constraint.  
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Fig. 5. Dynamics of revenues under no sojourn-time constraint 

 

 
Fig. 6. Dynamics of one player’s prices under varying learning rate  
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Fig. 7. Dynamics of prices under the primary user’s behavioral constraint  

 

 
Fig. 8. Dynamics of revenues under the primary user’s behavioral constraint 
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6. Conclusion 
We have presented a game-theoretic spectrum pricing scheme to obtain Nash equilibrium. 
Unlike the state-of-the-art studies, we consider a behavior pattern of primary users and we 
provide criteria for spectrum sharing in cognitive radio networks. We proposed a decentralized 
price (revenue) dynamic adaptation algorithm, which forces the price adaption to Nash 
equilibrium without fluctuations. We also investigated the convergence property of our DST 
algorithm.  
The design of cognitive radio technology requires the attention on the current trend of the 
selfish networks devices. We leave the impact of the collusion of selfish players to our future 
work.  
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