• Title/Summary/Keyword: Narrow-wall

Search Result 171, Processing Time 0.023 seconds

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF

A Study of Thermal and Chemical Quenching of Premixed Flame by Flame-Surface Interaction (화염-표면 상호작용에 의한 예혼합 화염의 열소염 및 화학소염에 관한 연구)

  • Kim, Kyu-Tae;Lee, Dae-Hoon;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • Incomplete combustion due to quenching in a narrow confinement has been a major problem for realization of a reliable micro combustion device. In most micro combustors, effects of flows are absent in the quenching because the flow is laminar and no severe stretch is present. In such circumstance, quenching is caused either by heat loss or by removal of active radicals to the wall surface of the confinement. An experimental investigation was carried out to investigate the relative significance of these two causes of quenching of a premixed flame. A premixed jet burner with a rectangular cross section at the exit was built. At the burner exit, the flame stands between two walls with adjustable distance. The gap between the two walls at which quenching occurs was measured at different wall surface conditions. The results were analyzed to estimate the relative significance of heat loss to the wall and the removal of radicals at the surface. The measurements indicated that the quenching distance was independent of the wall surface characteristics such as oxygen vacancy, grain boundary, or impurities at low temperature. At high temperature, however, the surface characteristics strongly affect the quenching distance, implying that radical removal at the wall plays a significant role in the quenching process.

  • PDF

Thermophoretic deposition of soot particles in laminar diffusion flame along a solid wall in microgravity (미소중력환경에서의 고체벽면근방 층류확산염내 매연입자의 열영동 부착)

  • Choi, Jae-Hyuk;Osamu, Fujita;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.19-24
    • /
    • 2007
  • The deposition behavior of soot particles in a diffusion flame along a solid wall was examined experimentally by getting rid of the effect of natural convection utilizing microgravity environment. The microgravity environment was realized by using a drop tower facility. The fuel for the flame was an ethylene ($C_2H_4$) and the surrounding oxygen concentration 35% with the surrounding air velocity of $V_a$=2.5, 5, and 10 cm/s. Laser extinction method was adopted to measure the soot volume fraction distribution between the flame and burner wall. The results show that observation of soot deposition in normal flame was difficult from buoyancy and the relative position of flame and solid surface changes with time. The soot particle distribution region moves closer to the surface of the wall as the surrounding air velocity is increased. And the experiments determined the trace of the maximum soot concentration line. It was found that the distance between soot line and flame line is around 5 mm. That is, the soot particle near the flame zone tends to move away from flame zone because of thermophoretic force and to concentrate at a certain narrow area inside of the flame, finally, to adhere the solid wall.

  • PDF

An Experimental Study on the Characteristics of Earth Pressure to a Debris-fall Prevention Wall (낙석방지벽에 작용하는 토압의 특성에 대한 실험적 연구)

  • Yoon, Nam-Sik;Park, Yong-Won;Park, Myoung-Soo;Choi, Yi-Jin
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This paper deals with the characteristics of earth pressure to the debris-fall prevention walls which usually are installed in front of steep slope. Such walls have narrow backfill width where the active soil wedge can not be developed fully. The earth pressure to such walls ue affected by the movement of wall and arching effects due to the friction developing on the surface of adjacent ground slope and wall and therefore cannot be analyzed and calculated reliably. The study is carried out through laboratory model tests using centrifuge test. Test results reveal that the earth pressure to the debris-fall prevention wall depends largely on the inclination angle of the ground slope and the wall movement. The earth pressure reduction due to wall movement was observed at the upper half of wall, while the arching effect was significant at the lower half especially in the case of steep ground slope. It can be said that from the result of this study in the design of a debris-fall prevention wall the earth pressure should be determined considering the inclination of ground slope and the condition of wall movement during and after construction.

  • PDF

General Steady-State Shape Factors in Analyzing Slug Test Results to Evaluate In-situ Hydraulic Conductivity of Vertical Cutoff Wall (순간변위시험(slug test)시 연직차수벽의 현장투수계수를 산정하기 위한 형상계수 연구)

  • Lim, Jee-Hee;Lee, Dong-Seop;Nguyen, Thebao;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.105-116
    • /
    • 2011
  • No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results. Recently, an analytical solution to interpret slug tests has been proposed for a partially penetrated well in an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions, the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Two boundary conditions are considered according to the existence of filter cakes: constant head boundary and no flux boundary. Generalized steady-state shape factors are presented for each geometric condition, which can be used for evaluating the in-situ hydraulic conductivity of cutoff walls. The constant head boundary condition provides higher shape factors and no flux boundary condition provides lower shape factors than the infinite aquifer, which enables to adjust the in-situ hydraulic conductivity of the cutoff wall. The hydraulic conductivities calculated from the analytical solution in this paper give about 1.2~1.7 times higher than those from the Bouwer and Rice method, one of the semi-empirical formulas. Considering the compressibility of the backfill material, the analytical solution developed in this study was proved to correspond to the case of incompressible backfill materials.

Patch Reconstruction with Radial Forearm Free Flap of Hypopharyngeal Cancer Using the Narrow Strip Pharynageal Wall (소폭의 잔존 하인두벽을 이용한 첩포형 전완유리 피판 인두 재건술)

  • Jeong, Hii Sun;Lee, Won Jai;Lew, Dae Hyun;Rah, Dong Kyun;Tark, Kwan Chul
    • Archives of Plastic Surgery
    • /
    • v.33 no.4
    • /
    • pp.407-412
    • /
    • 2006
  • Purpose: Various attempts of reconstruction for pharyngoesophageal defects after ablative surgery have been made to restore the function of the pharyngoesophagus. A fabricated tubed radial forearm free flap or free jejunal free flap was used when the width of remnant pharyngeal wall was less than 50% of the normal width. However there are many disadvantages such as stricture, saliva leakage and fistula formation on tubed radial forearm free flap. The jejunal free flap has the problem such as short pedicle, poor tolerance of ischemic time, wet voice and delayed transit of swallowed food due to the uncoordinated contraction. The authors studied the utility of patch-type radial forearm free flap using the remnant posterior pharyngeal wall of the hypopharynx. Methods: Retrospective reviews in Severance Hospital were made on 25 patients who underwent reconstruction surgery with patched radial forearm free flap because of the hypopharyngeal cancer between 1996 and 2005. The patients of Group I had the narrow posterior pharyngeal wall and its width was less than 3centimeters after the tumor was resected. Those of Group II had the partial pharyngectomy and the width of the remnant pharynx was larger than 3 centimeters. Results: Seven patients belonged to the group I and the flap of this group had 100% survival rate. One case of fistula and no swallowing discomfort due to stricture was reported. The Group II including 18 patients also had the 100% flap survival rate. Neither fistula nor stricture was seen but the lower diet grade was checked. Conclusion: The patch type radial forearm free flap using the remnant pharyngeal wall have the advantage of the radial forearm free flap, and furthermore this flap is the safe reconstructive method even if the width of the remnant pharyngeal wall is less than 30% of that of normal pharynx.

Analytical Solution for Transient Groundwater Flow in Vertical Cutoff Walls : Application of Slug Test and Evaluation of Hydraulic Conductivity (연직차수벽의 비정상 지하수 흐름에 대한 이론해 : 순간변위시험(slug test) 적용과 투수계수 산정)

  • Lim, Jee-Hee;Lee, Dong-Seop;Nguyen, The Bao;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.17-31
    • /
    • 2012
  • No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results with consideration of transient flow. There is an analytical solution proposed to interpret a slug test performed in a partially penetrated well within an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions (i.e, constant head boundary and no flux boundary condition), the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Type curves are constructed from the currently derived analytical solution and compared with those of a partially penetrated well within an aquifer. The constant head boundary condition provides faster hydraulic head recovery curve than the aquifer case. On the other hand, no flux boundary condition leads to slower hydraulic head recovery. The bigger the shape factor and deviation of the well and the smaller the width of the vertical cutoff wall are, the more effect of boundary condition was observed. The type curves obtained from the analytical solution for a cutoff wall are similar to those made by the numerical method in the literature.

A Study on the Narrow Erase Method of Surface Discharge AC PDP (면방전 AC PDP에서 세폭소거 방식에 관한 연구)

  • 안양기;윤동한
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.39-47
    • /
    • 2003
  • This paper proposes the new narrow erase method to erase wall charges formed in an AC plasma display panel (PDP) cell. In the Proposed method, sustain switching timing is adjusted for inducing a weak discharge. Then, after the narrow erase, tile voltage of the X electrode is set to differ from that of the Y electrode. For the proposed method, the measured maximum address voltage margin was 38.3V at Y_Reset voltage of 100V and sustain voltage of 180∼185V. However, for the prior method, in which the X and Y electrodes we set to be of equal voltage after the narrow erase, the measured maximum address voltage margin was 31.3V at Y_Reset voltage of 150V and sustain voltage of 180V. This result shows that the measured maximum voltage margin for the proposed method is greater than that for the prior method by ∼7V(22%).

Hybrid Welding Process for Sheet Metal and Narrow Gap Fill Pass (하이브리드 용접방식을 이용한 박판 및 후판용접공정)

  • Choi, Hae-Woon;Shin, Hyun-Myung;Im, Moon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.978-983
    • /
    • 2008
  • An application of innovative laser+GMA hybrid welding process is presented for reducing bead humping defects in high speed welding and increasing side wall fusion in narrow groove welding without torch or wire oscillation. In this hybrid process, the laser heat input is applied adjacent to the weld pool at a relatively low power density to produce a wider, flatter weld bead. In bead on plate in sheet metal gauges, the hybrid process was able to produce hump-free welds from 70ipm (${\sim}1780mm/min$) to over 150ipm (${\sim}3810mm/min$) of the travel speed compared to the un-assisted GMAW process. A square-butt joint in 15mm A572 Gr50 steel welds was investigated. A square butt joint with a gap of 3.2mm was filled with 6 passes. Liquid Nitrogen calorimetry and innovative $CO_2$ laser reflective optics were also developed to demonstrate the concept of hybrid welding.

A Study on the Analytical Model of Shear Wall Considering the Current Status of Structural Design (구조설계실무 현황을 고려한 전단벽 해석모형에 관한 고찰)

  • Jung, Sung-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.3-10
    • /
    • 2018
  • While computer environments have been dramatically developed in recent years, as the building structures become larger, the structural analysis models are also becoming more complex. So there is still a need to model one shear wall with one finite element. From the viewpoint of the concept of FEA, if one shear wall is modeled by one finite element, the result of analysis is not likely accurate. Shear wall may be modelled with various finite elements. Among them, considering the displacement compatibility condition with the beam element connected to the shear wall, plane stress element with in-plane rotational stiffness is preferred. Therefore, in order to analyze one shear wall with one finite element accurately, it is necessary to evaluate finite elements developed for the shear wall analysis and to develop various plane stress elements with rotational stiffness continuously. According to the above mentioned need, in this study, the theory about a plane stress element using hierarchical interpolation equation is reviewed and stiffness matrix is derived. And then, a computer program using this theory is developed. Developed computer program is used for numerical experiments to evaluate the analysis results using commercial programs such as SAP2000, ETABS, PERFORM-3D and MIDAS. Finally, the deflection equation of a cantilever beam with narrow rectangular section and bent by an end load P is derived according to the elasticity theory, and it is used to for comparison with theoretical solution.