• Title/Summary/Keyword: Narrow linewidth

Search Result 36, Processing Time 0.033 seconds

Single-longitudinal-mode unidirectional fiber laser using fiber Bragg grating (광섬유 브래그 격자를 이용한 단일 종모드 단방향 광섬유 레이저)

  • 이정찬;전영민;김명욱;김봉규;이상배;김상국;최상삼;이상선
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.233-236
    • /
    • 1999
  • We have constructed a narrow-linewidth single-longitudinal-mode unidirectional $Er^{3+}$ -doped fiber laser using a fiber Bragg grating incorporated by a three port optical circulator with a compact configuration. Using a conventional delayed self-heterodyne detection technique with Mach-Zehnder interferometer a linewidth of 5 kHz was measured. In a single-longitudinal-mode operation, output power of up to 2.7 mW at 1548 nm were obtained for a launched pump power of 43 mW at 980 nm.

  • PDF

Implementation of the Optical Filter Using FBG (FBG를 이용한 Optical Finer 구현)

  • 이종윤;신희성;손용환;이창원;정진호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.223-226
    • /
    • 2002
  • In this paper, we propose the FBG design using coupled mode theory based on perturbation theory. FBG can be used to extract the specific wavelength channel from the transmission ]me when many wavelengths are coupled in a multiwavelength transmission line. To analyze output characteristics of FBG and get optimum design data, we simulate through computer and verify by experiment. From the results obtained by simulation and experimentation, the proposed FBG fits for DWDM(Dense WBM) system because of the tunning narrow linewidth.

  • PDF

$^{13}C$ Nuclear Magnetic Resonance Study of Graphite Intercalated Superconductor $CaC_6$ Crystals in the Normal State ($CaC_6$ 결정에 대한 정상상태에서의 $^{13}C$ 핵자기공명 측정)

  • Kim, Sung-Hoon;Kang, Ki-Hyeok;Mean, B.J.;Ndiaye, B.;Lee, Moo-Hee;Kim, Jun-Sung
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • $^{13}C$ NMR (nuclear magnetic resonance) measurements have been performed to investigate the local electronic structure of a superconducting graphite intercalation compound $CaC_6$ ($T_c$ = 11.4 K). A large number of single crystals were stacked and sealed in a quartz tube for naturally abundant $^{13}C$ NMR. The spectrum, Knight shift, linewidth, and spin-lattice relaxation time $T_1$ were measured in the normal state as a function of temperature down to 80 K at 8.0 T perpendicular to the c-axis. The $^{13}C$ NMR spectrum shows a single narrow peak with a very small Knight shift. The Knight shift and the linewidth of the $^{13}C$ NMR are temperature-independent around, respectively, +0.012% and 1.2 kHz. The spin-lattice relaxation rate, $1/T_1$, is proportional to temperature confirming a Korringa behavior as for non-magnetic metals. The Korringa product is measured to be $T_1T\;=\;210\;s{\cdot}K$. From this value, the Korringa ratio is deduced to be $\xi$ = 0.73, close to unity, which suggests that the independent-electron description works well for $CaC_6$, without complications arising from correlation and many-body effects.

Wide-fan-angle Flat-top Linear Laser Beam Generated by Long-pitch Diffraction Gratings

  • Lee, Mu Hyeon;Ryu, Taesu;Kim, Young-Hoon;Yang, Jin-Kyu
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.500-505
    • /
    • 2021
  • We demonstrated a wide-fan-angle flat-top irradiance pattern with a very narrow linewidth by using an aspheric lens and a long-pitch reflective diffraction grating. First, we numerically designed a diffraction-based linear beam homogenizer. The structure of the Al diffraction grating with an isosceles triangular shape was optimized with 0.1-mm pitch, 35.5° slope angle, and 0.02-mm radius of the rounding top. According to the numerical results, the linear uniformity of the irradiance was more sensitive to the working distance than to the shape of the Al grating. The designed Al grating reflector was fabricated by using a conventional mold injection and an Al coating process. A uniform linear irradiance of 405-nm laser diode with a 100-mm flat-top length and 0.176-mm linewidth was experimentally demonstrated at 140-mm working distance. We believe that our proposed linear beam homogenizer can be used in various potential applications at a precise inspection system such as three-dimensional morphology scanner with line lasers.

High-beam-quality 2-kW-class Spectrally Combined Laser Using Narrow-linewidth Ytterbium-doped Polarization-maintaining Fiber Amplifiers (협대역 이터븀 첨가 편광유지 광섬유 증폭기를 이용한 고품질 2 kW급 파장제어 빔 결합 레이저)

  • Jeong, Hwanseong;Lee, Kwang Hyun;Lee, Junsu;Kim, Dong-Joon;Lee, Jung Hwan;Jo, Minsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.218-222
    • /
    • 2020
  • In this paper, we have experimentally demonstrated a 2-kW-class spectrally-beam-combined laser with high beam quality, using narrow-linewidth ytterbium-doped polarization-maintaining fiber amplifiers. Five fiber amplifiers with different center wavelengths were implemented for the spectrally-beam-combined laser. The center wavelengths of the five amplifiers were 1062, 1063, 1064, 1065, and 1066 nm, respectively. A phase-modulated laser diode was used as a seed source for each amplifier. The seed sources were modulated by filtered pseudorandom-bit-sequence (PRBS) signals 5 GHz in linewidth. The polarization-maintaining large-mode-area fiber with a core size of 30 ㎛ was used as a delivery fiber to mitigate the stimulated Brillouin scattering (SBS) effect. The laser beams from five amplifiers were spectrally combined by a multilayer dielectric diffraction grating. The maximum output power and beam quality M2 of the combined laser were measured to be 2.3 kW and 1.74, respectively.

Nanoscale-NMR with Nitrogen Vacancy center spins in diamond

  • Lee, Junghyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.2
    • /
    • pp.59-65
    • /
    • 2020
  • Nitrogen-Vacancy (NV) center in diamond has been an emerging versatile tool for quantum sensing applications. Amongst various applications, nano-scale nuclear magnetic resonance (NMR) using a single or ensemble NV centers has demonstrated promising results, opening possibility of a single molecule NMR for its chemical structural studies or multi-nuclear spin spectroscopy for quantum information science. However, there is a key challenge, which limited the spectral resolution of NMR detection using NV centers; the interrogation duration for NV-NMR detection technique has been limited by the NV sensor spin lifetime (T1 ~ 3ms), which is orders of magnitude shorter than the coherence times of nuclear spins in bulk liquid samples (T2 ~ 1s) or intrinsic 13C nuclear spins in diamond. Recent studies have shown that quantum memory technique or synchronized readout detection technique can further narrow down the spectral linewidth of NMR signal. In this short review paper, we overview basic concepts of nanoscale NMR using NV centers, and introduce further developments in high spectral resolution NV NMR studies.

Effects of the Gas Atmosphere of ZnO Buffer Layers in the ZnO films grown on Si Substrates by RF Magnetron Sputtering (RF 스퍼터링으로 Si 기판위에 제작된 ZnO 박막에서 ZnO 버퍼층의 가스분위기 영향)

  • Park, Tae-Eun;Cho, Hyung-Koun;Kong, Bo-Hyun;Hong, Soon-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.656-661
    • /
    • 2005
  • The effects of gas atmosphere and in-situ thermal annealing in buffet layers on the characteristic of the ZnO grown by RF magnetron sputtering have been investigated. It was shown that the introduction of buffer layers grown at the gas atmospheres of the mixed $Ar/O_2$ and the in-situ thermal treatment of the ZnO buffer layer improved the structural and optical properties. In addition, the ZnO films on the buffer layer thermal-annealed at $N_2$ gas ambience showed the strong emission of the near band gap exciton with narrow linewidth by combining the high-temperature growth of the ZnO film.