• 제목/요약/키워드: Narrow Range Monitoring

검색결과 21건 처리시간 0.018초

등전위 교번식 직류전위차법의 신호 정밀도 검증을 통한 배관 감육 진단 기술에의 적용성 검증 (Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis)

  • 류경하;황일순;김지현
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.191-198
    • /
    • 2008
  • 유체가속부식에 의한 탄소강 배관의 감육은 원자력 발전소 저탄소강 배관의 주요 경년열화 현상으로서, 예상치 못한 배관의 파단을 야기해 발전소의 성능 및 안전을 저해할 수 있다. 최근, 등전위 교번식 직류 전위차법(ES-DCPD, equipotential switching direct current potential drop)을 이용한 배관 감육의 정밀 감시기법이 본 연구자들에 의하여 개발되었다. ES-DCPD 방법은 넓은 배관 영역을 빠르게 검사할 수 있는 방법으로, 넓은 영역의 직관부 감육을 빠르게 검사하는 광역감시법(WiRN, wide range monitoring)과 엘보우 등 곡관부의 감육이 활발한 컴포넌트의 국부적 감육을 비교적 넓은 범위에서 빠르게 스캔하는 협역감시법(NaRM, narrow range monitoring)으로 사용이 가능하다. 광역감시와 협역감시 기법은 초음파검사의 위치 선정파 초음파검사의 검사 누락부에 대한 신뢰성을 개선할 수 있을 것이다. 본 논문에서는 ES-DCPD를 바탕으로 한 새로운 감육 진단 기술을 실험실 환경에서 장기 검증 시험을 수행하여 신호 정밀도를 분석하였고, 결과의 현장 적용성을 논의하였다.

도플러 전방향 표지시설(DVOR) 가상 모니터링 시스템 설계 및 구현에 관한 연구 (A Study on the Design and Realization of the Doppler VHF Omnidirectional Radio Virtual Monitoring System)

  • 김경태;윤준철;장해동;강석엽;박효달
    • 한국정보통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.265-272
    • /
    • 2011
  • 본 논문에서는 협소한 공간에서 예비용 도플러 전방향표지시설(DVOR)의 모니터링 시스템이 실제 운영 상태와 유사하게 동작할 수 있게 하기 위한 DVOR 가상 신호 발생기를 설계 및 제작하여 "DVOR 가상 모니터링 시스템"에 관하여 연구하였다. 설계, 제작된 DVOR 가상 신호 발생기는 현재 운용중인 장비에서 발생되는 신호의 사양에 적합하도록 하였고, 파라미터의 가변으로 장비의 운영 조건을 맞추는 것이 가능하도록 하였으며, 회로구성은 크게 동기 입력부, 변조부, 고이득 증폭부 및 전원부로 하였다. 본 연구에서 설계·구현된 가상 신호 발생기를 이용한 "DVOR 가상 모니터링 시스템"은 측대파 발생 안테나와 같이 실제 시스템을 사용하지 않고도 좁은 공간에서 실제 상황과 같은 운용 상태를 구성 할 수 있어 저비용의 실전 교육용으로 사용하기에 매우 적합하다고 사료된다.

건설업 유해화학물질 노출 모델의 개발 및 검증: Tier-2 노출 모델 (Development and Validation of Exposure Models for Construction Industry: Tier 2 Model)

  • 김승원;장지영;김갑배
    • 한국산업보건학회지
    • /
    • 제24권2호
    • /
    • pp.219-228
    • /
    • 2014
  • Objectives: The major objective of this study was to develop a tier 2 exposure model combining tier 1 exposure model estimates and worker monitoring data and suggesting narrower exposure ranges than tier 1 results. Methods: Bayesian statistics were used to develop a tier 2 exposure model as was done for the European Union (EU) tier 2 exposure models, for example Advanced REACH Tools (ART) and Stoffenmanager. Bayesian statistics required a prior and data to calculate the posterior results. In this model, tier 1 estimated serving as a prior and worker exposure monitoring data at the worksite of interest were entered as data. The calculation of Bayesian statistics requires integration over a range, which were performed using a Riemann sum algorithm. From the calculated exposure estimates, 95% range was extracted. These algorithm have been realized on Excel spreadsheet for convenience and easy access. Some fail-proof features such as locking the spreadsheet were added in order to prevent errors or miscalculations derived from careless usage of the file. Results: The tier 2 exposure model was successfully built on a separate Excel spreadsheet in the same file containing tier 1 exposure model. To utilize the model, exposure range needs to be estimated from tier 1 model and worker monitoring data, at least one input are required. Conclusions: The developed tier 2 exposure model can help industrial hygienists obtain a narrow range of worker exposure level to a chemical by reflecting a certain set of job characteristics.

Coherent fiber-optic intrusion sensor for long perimeters monitoring

  • Choi Kyoo Nam
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.876-879
    • /
    • 2004
  • The buried fiber optic cable as a distributed intrusion sensor for detecting and locating intruders along the long perimeters is proposed. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer. Light pulses from a Er:fiber cw laser with a narrow, <3kHz-range, spectral width and a frequency drift of < 1 MHz/min are injected into one end of the fiber, and the backscattered light from the fiber is monitored with a photodetector. Results of preliminary studies, measurement of phase changes produced by pressure and seismic disturbances in buried fiber optic cables and simulation of ${\varphi}-OTDR$ response over long fiber paths, to establish the feasibility of the concept are described. The field experiments indicate adequate phase changes, more than 1t-rad, are produced by intruders on foot and vehicle for burial depths in the 0.2 m to 1 m range in sand, clay and fine gravel soils. The simulations predict a range of 10 km with 35 m range resolution and 30 km with 90 m range resolution. This technology could in a cost-effective manner provide enhanced perimeter security.

  • PDF

Ratiometric pH Measurements Using LysoSensor DND-192

  • Kang, Jung-Sook;Kostov, Yordan
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.384-388
    • /
    • 2002
  • A method for the ratiometric pH sensing using LysoSensor DND-192 is presented in this paper. It works in the physiological pH range. It is based on the use of two fluorophores which differ significantly in their lifetimes. As the discrimination of their emissions is performed through two different frequencies, this method can allow significant overlap of the emission spectra. A simple long-pass filter, or a combination of long-and short-pass filters, was used instead of narrow-bandpass devices. Importantly, the measurements were carried out under strong ambient light. The method could be used in a wide variety of applications, such as intracellular measurements, microscopy, bioprocess monitoring, etc.

Wind-induced dynamic response of recessed balcony facades

  • Matthew J. Glanville;John D. Holmes
    • Wind and Structures
    • /
    • 제38권3호
    • /
    • pp.193-202
    • /
    • 2024
  • Modern high-rise tower designs incorporating recessed balcony cavity spaces can be prone to high-frequency and narrow-band Rossiter aerodynamic excitations under glancing incident winds that can harmonize and compete with recessed balcony volume acoustic Helmholtz modes and facade elastic responses. Resulting resonant inertial wind loading to balcony facades responding to these excitations is additive to the peak design wind pressures currently allowed for in wind codes and can present as excessive facade vibrations and sub-audible throbbing in the serviceability range of wind speeds. This paper presents a methodology to determine Cavity Amplification Factors to account for façade resonant inertial wind loads resulting from balcony cavity aero-acoustic-elastic resonances by drawing upon field observations and the results of full-scale monitoring and model-scale wind tunnel tests. Recessed balcony cavities with single orifice type openings and located within curved façade tower geometries appear particularly prone. A Cavity Amplification Factor of 1.8 is calculated in one example representing almost a doubling of local façade design wind pressures. Balcony façade and tower design recommendations to mitigate wind induced aero-acoustic-elastic resonances are provided.

낙동강에서 유기오염 및 SS 농도 변화에 따른 DOC 농도 변화의 특성 (Characteristics of Changes in DOC Concentration according to Concentrations of Organic Matter and Suspended Solids in the Nakdong River)

  • 이규열;김주언;이권철;이경락;이인정;임태효
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.540-550
    • /
    • 2013
  • Temporal increase of SS induces concentrations in various forms of organic matter including BOD, COD, TOC. Consequently, it causes hard to identify sources of water pollution during or after precipitation. The objective of this study is to investigate variations of DOC concentration caused by increase of flow and changes of external factors in river by comparing to SS concentration. In results, monitoring sites (e.g., Banbyeonchen) consisting of hard riverbed showed high correlation between SS and organic matters, except BOD. On the contrary, other sites (e.g., Naesungcheon) where riverbed consists of sand were found in a wide range of annual fluctuation in SS level, whereas these sites showed a narrow range in annual DOC fluctuation. In Gumhogang and Namgang, a lower correlation between SS and other factors was found most likely because of high concentration in organic matter. However, lower annual fluctuation values of DOC were observed in comparison to those of COD and TOC. Similar results were also confirmed in main river sites, Sangju and Mulgeum. In conclusion, DOC concentration is better indicator for monitoring organic matter which cannot be provided by BOD, COD, TOC in the Nakdong river basin.

음향을 이용한 남해 연안에 서식하는 상괭이(Neophocaena asiaeorientalis)의 출현 특성 연구 (Emergence Characteristics of Narrow-ridged Finless Porpoise Neophocaena asiaeorientalis Using Passive Acoustic Survey in the South Sea of South Korea)

  • 최슬기;김은호;손호선
    • 한국수산과학회지
    • /
    • 제54권6호
    • /
    • pp.989-999
    • /
    • 2021
  • The sound of finless porpoises Neophocaena asiaeorientalis was recorded with an acoustic recorder to confirm their emergence in the South Sea of South Korea in February, June, and November 2020. Sea water temperature and salinity were also measured. In addition, a sighting survey was conducted to observe the behavior of the finless porpoises and the marine environment, and the clicks of the finless porpoises were recorded every day. The results showed that they always emerged in the survey area. The finless porpoises mainly foraged, whereas some played or rested. The water temperature range of areas where the finless porpoises emerged was 7.5-23.5℃. Assuming that the number of clicks corresponds to the number of finless porpoises, the finless porpoises emerged the most during spring. The emergence decreased during winter and was the lowest during autumn. The finless porpoises emerged more during the daytime than during the nighttime in all seasons, indicating a temporal difference in the usage of the survey area. This might be due to the movement of prey organisms according to regional characteristics. A long-term survey and research on habitat use and environment is needed to manage and conserve the finless porpoises.

2차원 실내모형실험과 수치해석을 이용한 사질토 지반의 얕은 터널에 대한 지중변형에 대한 규명 (Investigation of Subsurface Deformations for the Shallow Tunnel In A Granular Mass Using Two-Dimensional Laboratory Model Test and Numerical Analysis)

  • 이용주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.219-228
    • /
    • 2006
  • In urban areas, tunnelling induced ground deformations, particularly ground settlements should be considered in order to minimize the damage of adjacent structures. Therefore, an appropriate monitoring system for the tunnel construction should be setup at the planning or design stage. A number of studies on ground settlements due to tunnelling in soft ground have been carried out so far. However, most studies have focused on clay soil rather than sand soil. In particular, a few studies on behaviour of subsurface deformations in granular material have been reported. In this study, two-dimensional laboratory model test with aluminium rods regarded as continuum granular material and close range photogrammetric technique, and numerical analysis were carried out in order to identify the behaviour of subsurface deformations due to shallow tunnelling. Direction and magnitude of displacement vectors from the model test was identical to the numerical analysis. In particular, the vector direction was appeared to be toward a point below the tunnel invert level. A narrow 'chimney or tulip like' pattern of vertical displacement was confirmed by both the model test and numerical analysis. This is consistent with the field data. In addition to the qualitative comparison, the quantitative comparison of subsurface settlements according to 2D volume loss showed good agreement between the model test and numerical analysis. Therefore, close range photogrammetric technique applied in the model test may be used to validate the result from the continuum numerical analysis.

  • PDF

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.