• Title/Summary/Keyword: Naphthalene Sublimation Technique

Search Result 88, Processing Time 0.02 seconds

Experimental Study on the Heat Transfer Characteristics on a Film-Cooled Flat Plate - Effect of Injection Angle and Blowing Rate - (막냉각되는 평판에서의 열전달특성에 관한 실험적 연구)

  • 이상우;신세현;이택시;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1415-1427
    • /
    • 1988
  • The effect of injection angle and blowing rate on a film-cooled flat plate has been investigated experimentally. Three cases of 90.deg. injection, 35.deg. streamwise injection and 35.deg. spanwise injection are employed. The naphthalene sublimation technique in used to obtain local mass transfer coefficients. Thus heat transfer coefficients are evaluated using heat-mass transfer analogy. Schlieren photographs are taken to visualize the trajectory of injection fluid by introducing carbon dioxide gas through injection tubes. The experiments indicate that due to the injection the heat transfer coefficients increase significantly in the neighborhood of the infection holes, so the design of film cooled component must be based on the heat transfer coefficient with injection as well as film cooling effectiveness.

Heat/Mass Transfer Characteristics in A Rotating Duct with $180^{\circ}$ Turn ($180^{\circ}$ 곡관부를 가지는 회전 덕트에서의 열/물질전달 특성)

  • Won, Chung-Ho;Lee, Sei-Young;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a rotating two-pass rectangular duct. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The objective of this study is to determine the effects of turning geometry with rotation for 0.0$\leq$Ro$\leq$0.24. The results reveal that the sharp-turn corner has the larger pressure drop and lower heat transfer in the post-turn region than those of the round-turn corner. The strong secondary flow enhances heat transfer for the round-turn corner. Coriolis force induced by the rotation pushes the high momentum core flow toward the trailing wall in the first passage with radially outward flow and toward the leading wall in the second passage with radially inward flow. Consequently, the high heat transfer rates are generated on the trailing surface and the leading surface in the first and second passage, respectively. However, the strong secondary flow due to the turning dominates the flow pattern in the second passage, thus the heat transfer differences between the leading and trailing surfaces are small with the rotation.

The Review of Studies on Heat Transfer in Impinging Jet

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.196-205
    • /
    • 2005
  • In this paper, recent research trend on heat transfer in impinging jet is reviewed. We focused on submerged jet that air issued into air or liquid issued into liquid. To control and enhance the heat transfer in single jet, researchers have performed a lot of experiments by considering the nozzle geometry, impinging surface and active method such as jet vibration, secondary injection and suction flow. The studies on multiple jet have been mainly focused on finding out the optimum condition and on investigating many different factors concerned with application condition (crossflow, rotation and geometry etc.) and combined techniques (rib turbulator, pin fin, dimple and effusion hole etc.). All most experiments showed the detailed heat transfer data by using liquid crystal method, infrared camera technique and naphthalene sublimation method. Many numerical calculations have been performed to investigate the flow and heat transfer characteristics in laminar jet region. Various turbulence models such as $k-\varepsilon-\bar{\nu^2}$, modified $k-\varepsilon-f_{\mu}$ were applied to the calculation for turbulent jet and the predicted results showed a good agreement with the experimental data. Although a lot of studies on impinging jet have performed consistently up to recently, further studies are still required to understand the flow and heat transfer characteristics more accurately, and to give a guideline for optimum impinging jet design in various applications.

Experimental Study of Reynolds Number Effects on Heat/Mass Transfer and Pressure Drop Characteristics in a Rotating Smooth Duct (매끈한 벽면을 가진 회전덕트 내 레이놀즈 수에 따른 열/물질전달 및 압력강하 특성 연구)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.888-895
    • /
    • 2006
  • The present study has been conducted to investigate the effects of Reynolds number on heat/mass transfer and pressure drop characteristics in a rotating smooth two-pass duct. For stationary cases, the heat/mass transfer and pressure drop Is decreased on turning region of both leading and trailing surfaces as Reynolds number increases. For rotating cases, increment of Reynolds number affects differently the heat/mass transfer and pressure drop on the leading and trailing surfaces. In the first pass, for example, the heat/mass transfer on the leading surface is greatly increased, though the heat/mass transfer on the trailing surface is almost the same. The reason is that effect of the main flow is more dominant than effect of secondary flow. In particular, it gave decrement of the heat/mass transfer and the pressure drop at turning region and upstream region of second pass for both non-rotating and rotating cases.

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (I) - Effects of Rib Tubulators - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (I) - 요철 설치에 따른 영향 -)

  • Kim, Kyung-Min;Kim, Sang-In;Kim, Yun-Young;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.910-920
    • /
    • 2004
  • The heat/mass transfer characteristics in a rotating two-pass duct with and without rib turbulators are investigated in the present study. The square duct has a hydraulic diameter ($D_h$) of 26.7 mm, and $1.5\;mm{\times}1.5\;mm$ square $90^{\circ}$-rib turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The Reynolds number based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number is varied from 0.0 to 0.20. In the smooth duct, the curvature of the $180^{\circ}$-turn produces Dean vortices that enhance heat/mass transfer in the post-turn region. When rib turbulators are installed, heat/mass transfer is augmented 2.5 times higher than that of the smooth duct since the main flow is turbulated by reattaching and separating in the vicinity of the duct surfaces. The duct rotation results in heat/mass transfer discrepancy so that Sherwood number ratios are higher on the trailing surface in the first-pass and on the leading surface in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent heat/mass transfer characteristics also change. As the rotation number increases, the heat/mass transfer discrepancy enlarges.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Heat Transfer in Rotating Duct with $70^{\circ}$ Angled Ribs (회전하는 덕트내 설치된 $70^{\circ}$ 경사요철의 열전달 특성)

  • Choi, Chung;Lee, Sei Young;Won, Jung Ho;Cho, Hyung Hee;Park, Byung kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.7-13
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a cooling passage of rotating gas-turbine blades. The rotating duct has staggered ribs with $70^{\circ}$ attack angle, which are attached on leading and trailing surfaces. Naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. Additional numerical calculations are conducted to analyze the flow patterns in the cooling passage. The present experiments employ two-surface heating conditions in the rotating duct because the exposed surfaces to hot gas stream are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. Secondary flows are generated by Coriolis and centrifugal forces in the spanwise and streamwise directions. The ribs attached on the walls disturb the mainflow resulting in recirculation and secondary flows near the ribbed wall. The local heat transfer and flow patterns in the passage are changed significantly according to rib configurations and duct rotation speeds. Therefore, the geometry and arrangement of the ribs are important for the advantageous cooling performance. The experimental results show that the ribs enhance the heat transfer more than $70\%$ from that of the smooth duct. The duct rotation generates the heat transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The overal heat transfer pattern on the leading and trailing walls for the first and second passes are depended on the rotating speed, but the local heat transfer trend is affected mainly by the rib arrangements.

  • PDF

Characteristics of Heat/Mass Transfer and Pressure Drop in a Square Duct with Compound-Angled Rib Turbulaters (복합각도 요철을 가지는 사각 덕트 내의 열전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.325-333
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the cooling passage of the gas-turbine blades. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. The square duct has compound-angled ribs with $60^{\circ},\;70^{\circ}$ and $90^{\circ}$ attack angles, which are installed on the test plate surfaces. a naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vertices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. Therefore, geometry and arrangement of the ribs are important fur the advantageous cooling performance. The angled ribs increase the heat transfer discrepancy between the wall and center regions because of the interaction of the secondary flows. The average heat/mass transfer coefficient and pressure drop of the ribs with the $60^{\circ}$ $-90^{\circ}$ compound-angle are higher than those with the $60^{\circ}$ attack angle. Also, the thermal efficiency of the compound-angled rib is higher than that with the $60^{\circ}$ attack angle. The uniformity of heat/mass transfer coefficient on the cross ribs may is higher than that on the parallel ribs array.

  • PDF

Experimental Study of Heat/Mass Transfer in Rotating Cooling Passages with Discrete Ribs (단락 요철이 설치된 내부 냉각유로에서 회전에 따른 열/물질전달 특성 연구)

  • Kim Kyung Min;Kim Sang In;Lee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.590-598
    • /
    • 2005
  • The present study has been conducted to investigate the effect of discrete ribs and rotation on heat/mass transfer characteristics in a two-pass square duct with $90^{\circ}-rib$ turbulators. The rib turbulator has a square cross section of 1.5 mm. The rib height-to-hydraulic diameter ratio $({e/D_{h})$ is 0.056, and the rib pitch-to-rib height ratio (p/e) is 10. The gap width is the same as the rib height. The rotation number ranges from 0.0 to 0.2 while Reynolds number is fixed to 10,000. In a stationary duct, the heat/mass transfer on the surfaces with discrete ribs is enhanced because the gap flow promotes local turbulence and flow mixing near the ribbed surface. In a rotating duct, the gap flow affects differently the heat/mass transfer on leading and trailing surfaces with discrete ribs. On the leading surface of the first pass, heat/mass transfer is increased due to the gap flow. On the trailing surface of the first pass, however, heat/mass transfer is decreased because the gap flow disturbs reattachment of main flow. The phenomenon, that is, the difference of heat transfer between the leading and the trailing surfaces is distinctly presented by rotation.

Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region ( I ) - Cross Ribbed Duct - (곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 ( I ) - 엇갈린 요철배열 덕트 -)

  • Kim Kyung Min;Kim Yun Young;Rhee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.737-746
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the cross arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of $2\;mm\;(e){\times}\;mm\;(w)$ and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The heat transfer data of the smooth duct for various Ro numbers agree well with not only the McAdams correlation but also the previous studies. The cross-rib turbulators significantly enhance heat/mass transfer in the passage by disturbing the main flow near the surfaces and generating one asymmetric cell of secondary flow skewing along the ribs. Because the secondary flow is induced in the first-pass and turning region, heat/mass transfer discrepancy is observed in the second-pass even for the stationary case. When the passage rotates, heat/mass transfer and flow phenomena change. Especially, the effect of rotation is more dominant than the effect of the ribs at the higher rotation number in the upstream of the second-pass.