• Title/Summary/Keyword: Nanostructured

Search Result 585, Processing Time 0.029 seconds

The Relation between Emission Properties and Growth of Carbon nanotubes with dc bias by RF Plasma Enhanced Chemical Vapor Deposition

  • Choi, Sun-Hong;Han, Jae-Hee;Lee, Tae-Young;Yoo, Ji-Beom;Park, Chong-Yun;Yi, Whi-Kun;Yu, Se-Gi;Jung, Tae-Won;Lee, Jung-Hee;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.662-665
    • /
    • 2002
  • The growth of carbon nanotubes (CNTs) was carried out using ratio frequency plasma enhanced chemical vapor deposition (rf PECVD) system equipped with dc bias for the directional growth. Acetylene and ammonia gas were used as the carbon source and a catalyst. The relation between gas flow rate and dc bias on the growth of CNTs was investigated. We studied the relation between emission properties and the directionality of CNTs grown under different dc bias voltage.

  • PDF

Optoacoustic Ultrasound Generator Based on Nanostructured Germanium (광음향효과를 이용한 게르마늄 나노구조 기반의 초음파 발생 소자 연구)

  • Yoon, Sang-Hyuk;Heo, Junseok
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.5
    • /
    • pp.255-260
    • /
    • 2015
  • We have fabricated an optoacoustic ultrasound generator based on nanostructured germanium (Ge). Ge thin films were deposited via e-beam evaporation and then etched using a metal-assisted chemical (MAC) method to form nanostructured Ge films. The measured intensity of ultrasound from the nanostructured Ge covered with PDMS was about 3 times stronger than that of 100-nm-thick chromium (Cr). When the nanostructured Ge was embedded in the PDMS, the intensity of ultrasound became 8.5 times as strong compared to the 100-nm-thick Cr.

Nanotechnology Meet Immunology: Nanomaterials for Enhanced Immunity

  • Im, Yong-Taek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.92.2-92.2
    • /
    • 2013
  • The design and chemical synthesis of multifunctional nanomaterials have been providing potential applications in biomedical fields such as molecular imaging and drug delivery. Recently, bio-derived and/or synthetic nanostructured materials capable of modulating the immune system have been also issues of interest in immunology-related nanomedicine fields. In this talk, the recent research results on the development of nanostructured materials for enhanced immunity would be presented. I will introduce the chemical strategy for the combination of nanostructured materials and bioactive compounds to improve both anti-cancer immunity and vaccine delivery efficiency.

  • PDF

Mesoporous Thin Films with Accessible Pores from Surfaces

  • Lee, U-Hwang;Kim, Min-Hye;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.808-816
    • /
    • 2006
  • Among the many forms of mesoporous materials, thin films are important for the potential applications of this class of materials. Compared with the powder forms, however, there has been relatively little work done on thin films probably because of the lack of suitable and generalized synthetic mechanisms established. In this account, we will review the issues on mesoporous thin films with emphasis on the necessity of forming films with accessible pores from the film surfaces and on mesoporous thin films with metal oxides other than silica. Various methods that have been tried to utilize mesoporous thin films with accessible pores as templates for the synthesis of nanostructured materials are reviewed with the emphasis on the advantages of the electrochemical deposition technique.

Preparation of uniformly dispersed iron nanoparticles and growth of carbon nanotube

  • Kim, Do-Yoon;Yoo, Ji-Beom;Berdinsky, A.S.;Park, Chong-Yun;Han, In-Taek;Jung, Jae-Eun;Jin, Yong-Wan;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.462-464
    • /
    • 2004
  • We studied the growth characteristics of carbon nanotubes which was grown from uniformly dispersed iron nanoparticles prepared from iron-acetate [Fe(II)$(CH_3COO)_2$]. The density of CNT was controlled from precursor concentrations. We also investigated the field emission properties of CNTs. We found that the optimization of CNT density is an important factor for field_emission properties.

  • PDF

Synthesis of Nanostructured Fe-Co Alloy Powders from Metal Salts

  • Lee, Young-Jung;Lee, Jea-Sung;Seo, Young-Ik;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.336-339
    • /
    • 2006
  • Magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as pain size (or particle size), internal strain and crystal structure. Thus, studies on the synthesis of nanostructured materials with controlled microstructure are necessary fur a significant improvement in magnetic properties. In the present work, nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated from the powder mixtures of (99.9% purity) $FeCl_2$ and $CoCl_2$ by chemical solution mixing and hydrogen reduction.

Fabrication and Magnetic Properties of Nanostructured Fe-Co Alloy Powder (나노 구조 Fe-Co 합금분말의 제조 및 자성특성)

  • 이백희;안봉수;김대건;김영도
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.182-188
    • /
    • 2002
  • Conventional Fe-Co alloys are important soft magnetic materials that have been widely used in industry. Compared to its polycrystalline counterpart, the nanostructured materials have showed superior magnetic properties, such as higher permeability and lower coercivity due to the single domain configuration. However, magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. In the present work, starting with two powder mixtures of Fe and Co produced by mechanical alloying (MA) and hydrogen reduction process (HRP), differences in the preparation process and in the resulting microstructural characteristics will be described for the nano-sized Fe-Co alloy particles. Moreover, we discuss the effect of the microstructure such as crystal structure and grain size of Fe-Co alloys on the magnetic properties.

Annealing Effects on Electron Transport properties of Nanostructured Thin Film (Annealing에 의한 나노구조 박막의 전기적 특성 연구)

  • Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.98-101
    • /
    • 2006
  • Electron transport properties of nanostructured Pb thin film, consisting of grains, have been studied. Nanostructured thin films were fabricated on a substrate held at low temperature and their thicknesses were less than 10nm. While temperature of the film increased from 1.3 K to room temperature, the change in normal state sheet resistance has been measured. As the annealing temperature varies, the normal state sheet resistance shows a non-monotonic and irreversible change. Such behavior can be understood with the Pb grain growth due to annealing of the film.

On the Properties of Nanostructured Cu-Pb Alloys Prepared by Mechanical Alloying (기계적 합금화 방법으로 제조된 Nanostructured Cu-Pb 합금의 물성 연구)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 1996
  • Nanostructured Cu-Pb powders were synthesized by mechanical alloying process. The variation of powder characteristics with mechanical alloying time was investigated by x-ray diffraction, differential scanning calorimetry, SEM and TEM. An electrical resistivity of the hot pressed specimens was also measured by using the nanovoltmeter. It was shown that mechanical alloying for 12 hours leads to a homogenization and a grain refinement to the nanometer scale under 20 nm. The mechanically alloyed Cu-Pb alloys represented the enhanced solid solubility of 10wt% Pb in the Cu matrix. The monotectic temperature of nanostructured Cu-Pb alloy decreased from equilibrium state of 955$^{\circ}C$ to 855$^{\circ}C$ due to reduced grain size effect. The analysis of electrical resistivity showed that the hot pressed MA Cu-5wt% Pb compact existed as a solid solution.

  • PDF

Fabrication of Nanostructured WC/Co Alloy by Chemical Processes

  • Kim, Byoung-Kee;Ha, Gook-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.346-347
    • /
    • 2006
  • New manufacturing processes, such as thermochemical, mechanochemical and chemical vapor condensation processes have been developed to obtain nanostructured WC/Co materials. Nanoscale size WC/Co composite powders of near 100-150nm can be synthesizes by thermochemical and mechanochemical processes using water soluble precursors. Non-agglomerated and nano sized WC powder can be synthesized by the chemical vapor condensation process using metallorganic precursors as starting materials. In this paper, the scientific and technical issues on synthesis and consolidation of nanostructured WC/Co alloys produced by new chemical processes are introduced.

  • PDF