• Title/Summary/Keyword: Nanosized complex

Search Result 11, Processing Time 0.02 seconds

Preparation of a Nanosized Micro Element Fertilizer Formulation by using Gamma-irradiation Technique (감마선 조사기술을 이용한 미량원소 비료 나노제제 제조)

  • Park, Hae-Jun;Kim, Hwa-Jung
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.347-352
    • /
    • 2010
  • In this study, we addressed a novel nanosized curdlan-silica complex, which is curdlan bound to silica, for the development of a sustain-releasing micro element fertilizer formulation. The complex was obtained as follow steps; First, Curdlan polymer, sodium silicate ($Na_2SiO_3$) and isopropyl alcohol were dissolved in DDW. Next the resultant solution was irradiated by $^{60}Co$ gamma-irradiator (150 TBq of capacity; ACEL, Canada). Then $MgSO_4$ was treated with the resultant solution. The obtained colloidal solution was dried by freeze dryer. Finally, we obtained a novel nanosized curdlan-silica formulation containing $MgSO_4$ from the colloidal solution. The morphology of the complex was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The nanosized curdlan-silica complex has a particle size ranging from 20 to 80 nm and high stability. Our results suggested that the nano-complex can be applicable to use in various sustain-releasing formulation for pesticide delivery system (PDS).

Synthesis of Nanosized Titanium-Colloid by Sol-Gel Method and Characterization of Zinc Phosphating (졸-겔법에 의한 나노크기의 티탄-콜로이드 합성 및 인산염 피막 특성)

  • Lee Man Sig;Lee Sun-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Nanosized titanium-colloid particles were prepared by sol-gel method. The physical properties, such as thermal stability, crystallite size and crystallinity according to synthesis condition have been investigated by TEM, XRD, SEM, TGA and DTA. In addition, Zinc phosphating has been studied in order to compare the phosphating characterization of prepared nanosized titanium-colloid particles. The major phase of all the prepared titanium-colloid particles was an amorphous structure regardless of synthesis temperature and the structure was composed of phoshate complex and titanium. The micrographs of HR- TEM showed that nanosized titanium-colloid particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the titanium-colloid particles synthesized at 80℃ was 4-5 nm and increased to 8-10 nm with an increase of synthesis temperature (150℃). In addition, the coating weight increased with an increase of temperature of phosphating solution and when the concentration of titanium-colloid was 2.0 g/l, the coating weight was 1.0 g/㎡.

Stability and Environmental Safety of a Nanosized Agroformulation by Using Gamma-irradiation Technique (감마선을 이용하여 제조한 농업용 나노제제의 보존성 및 환경안전성)

  • Park, Hae-Jun;Kim, Hwa-Jung;Choi, Jin-Su
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.171-176
    • /
    • 2013
  • In previous study, the novel nanosized curdlan-silica complex for a sustain-releasing effect was developed by using gamma-irradiation. It can be applicable to use in various sustainr-eleasing formulation in agriculture industry. This study was conducted to investigate its storage stability and environmental toxicity in an accelerated condition. The complex samples were treated with high temperature condition ($65^{\circ}C$) during 3 weeks, and then sustain-releasing property of complex was verified thereby using Ion Chromatography on a weekly basis. The morphology of the complex was characterized using scanning electron microscopy (SEM). Results of Ion Chromatography analysis showed that sample treated for 3 weeks was similar to sustain-releasing pattern of non-treatment sample. We verify concluded that the complex is able to keep its sustain-releasing property and sustained-releasing in 3 years. Also the formulation has no environmental toxicity.

Preparation of a Hydrophobized Chitosan Oligosaccharide for Application as an Efficient Gene Carrier

  • Son Sohee;Chae Su Young;Choi Changyong;Kim Myung-Yul;Ngugen Vu Giang;Jang Mi-Kyeong;Nah Jae-Woon;Kweon Jung Keoo
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • To prepare chitosan-based polymeric amphiphiles that can form nanosized core-shell structures (nanopar­ticles) in aqueous milieu, chitosan oligosaccharides (COSs) were modified chemically with hydrophobic cholesterol groups. The physicochemical properties of the hydrophobized COSs (COSCs) were investigated by using dynamic light scattering and fluorescence spectroscopy. The feasibility of applying the COSCs to biomedical applications was investigated by introducing them into a gene delivery system. The COSCs formed nanosized self-aggregates in aqueous environments. Furthermore, the physicochemical properties of the COSC nanoparticles were closely related to the molecular weights of the COSs and the number of hydrophobic groups per COS chain. The critical aggregation concentration values decreased upon increasing the hydrophobicity of the COSCs. The COSCs effi­ciently condensed plasmid DNA into nanosized ion-complexes, in contrast to the effect of the unmodified COSs. An investigation of gene condensation, performed using a gel retardation assay, revealed that $COS6(M_n=6,040 Da)$ containing $5\%$ of cholesteryl chloroformate (COS6C5) formed a stable DNA complex at a COS6C5/DNA weight ratio of 2. In contrast, COS6, the unmodified COS, failed to form a stable COS/DNA complex even at an elevated weight ratio of 8. Furthermore, the COS6C5/DNA complex enhanced the in vitro transfection efficiency on Human embryonic kidney 293 cells by over 100 and 3 times those of COS6 and poly(L-lysine), respectively. Therefore, hydrophobized chitosan oligosaccharide can be considered as an efficient gene carrier for gene delivery systems.

Complex Ordering of Supramolecular Dendrimers in Confined Geometries.

  • Yoon, Dong-Ki;Choi, Myung-Chul;Kim, Yun-Ho;Kim, Mahn-Won;Jung, Hee-Tae
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.189-189
    • /
    • 2006
  • The self-assembly of supramolecular dendrimers allows the rapid construction of nanosized structures with regularly ordered features that depend on the shape of the molecules and the relative strength of the intra-and intermolecular interactions. Here we report on a dramatic improvement in the degree of control and selectivity in the orientation of fan-shaped supramolecular molecules over a large area, which has been achieved by confined geometries and applied fields. The order and orientation of supramolecular dendrimers can be controlled by surface anchoring in confined geometries. POM, SEM, TEM, AFM and XRD results show that the molecules form the complicated defect-ordering in the microchannels with different feature sizes. We show that these defect domains are strongly influenced by the boundary and feature size of the surfaces. This technique can be used to create a grain size in the plane of the film that is much larger than that which can be achieved using previously reported soft-material based pattering.

  • PDF

Phase Identification of Al-Ti Alloys Using Convergent Beam Electron Diffraction Pattern (수렴성 빔 전자회절 도형을 이용한 Al-Ti 합금의 상 분석)

  • Kim, Hye-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.149-155
    • /
    • 2001
  • The use of primitive cell volume and zero order Laue (ZOLZ) pattern is proposed to identify phase in a complex microstructure. Single convergent beam electron pattern containing higher order Laue zone ring from a nanosized region is sufficient to calculate the primitive cell volume of the phase, while ZOLZ pattern is used to determine the zone axis of the crystal. A computer program is used to screen out possible phases from the value of measured cell volume from convergent beam electron diffraction (CBED) pattern. Indexing of ZOLZ pattern follows in the program to find the zone axis of the identification from a single CBED pattern. An example of the analysis is given from the rapidly solidified $Al-Al_3Ti$ system.

  • PDF

Fabrication and Characterization of Highly Reactive Al/CuO Nano-composite using Graphene Oxide (산화그래핀을 적용한 고반응성 Al/CuO 나노복합재 제조 및 분석)

  • Lim, YeSeul
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • The aluminum (Al)/copper oxide (CuO) complex is known as the most promising material for thermite reactions, releasing a high heat and pressure through ignition or thermal heating. To improve the reaction rate and wettability for handling safety, nanosized primary particles are applied on Al/CuO composite for energetic materials in explosives or propellants. Herein, graphene oxide (GO) is adopted for the Al/CuO composites as the functional supporting materials, preventing a phase-separation between solvent and composites, leading to a significantly enhanced reactivity. The characterizations of Al/CuO decorated on GO(Al/CuO/GO) are performed through scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping analysis. Moreover, the functional bridging between Al/CuO and GO is suggested by identifying the chemical bonding with GO in X-ray photoelectron spectroscopy analysis. The reactivity of Al/CuO/GO composites is evaluated by comparing the maximum pressure and rate of the pressure increase of Al/CuO and Al/CuO/GO. The composites with a specific concentration of GO (10 wt%) demonstrate a well-dispersed mixture in hexane solution without phase separation.

Fabricating Highly Aligned Electrospun Poly(${\varepsilon}$-caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration (신경세포 재생을 위한 고배열성 Poly(${\varepsilon}$-caprolactone) 마이크로/나노섬유 제조 공정에 관한 연구)

  • Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon;Kim, Geun-Hyung
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • Recently, an electrospinning process, which is one of various nanotechnologies, has been used in fabricating micro/nanosized fibers. The fabricated electrospun micro/nanofibers has been widely applied in biomedical applications, specially in tissue regeneration. In this study, we fabricated highly aligned electrospun biodegradable and biocompatible poly(${\varepsilon}$-caprolactone)(PCL) micro/nanofibers by using a modified electrospinning process supplemented with a complex electric field. From this process, we can attain highly aligned electrospun nanofibers compared to that fabricated with the normal electrospinning process. To observe the feasibility of the highly aligned electrospun mat as a biomedical scaffold, nerve cells(PC-12) was cultured and it was found that the cells those were well oriented to the direction of aligned fibers.

Preparation of blocking ultraviolet mica composites using Nano-TiO2 (Nano-TiO2를 이용한 자외선차단 마이카 복합체 제조)

  • Yun, Ki Hoon;Lee, Jaebok;Moon, Young-Jin;Go, Hee Kyoung;Lee, Yi;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1197-1205
    • /
    • 2018
  • UV protection cosmetics belong to functional cosmetics and contain organic or inorganic UV blocking pigments. The inorganic UV blocking pigments are mainly zinc oxide and titanium dioxide. It is known that inorganic UV blocking pigment has a diameter of 60 to 100 nm and has good blocking ability of UVA and UVB. Also, it has high inactivity against sunlight including UV and is excellent in safety. In addition, it is not absorbed or accumulated on the skin like organic pigments and does not cause skin irritation or allergy. In this study, mica, a plate-shaped inorganic pigment, nanosized titanium dioxide, an UV blocking material, and hydrophobic silica were surface-treated with surfactants. And then, titanium dioxide nanoparticles and silica were physically adsorbed on the mica by non-chemical mutual attraction due to differences in charge. Thereafter, the mica complex was surface-treated with silane to prepare a hydrophobic UV blocking pigment complex. The plate-shaped UV blocking composite improves the cohesiveness of a general nanoparticle material titanium dioxide, enhances UV blocking effect due to uniform dispersion, and can greatly improve dispersion stability in cosmetic formulations by surface treatment with hydrophobic property. The surface charge of the pigment was evaluated by zeta potential. The properties of the UV blocking pigment complex were evaluated by FE-SEM, XRD, FT-IR and UV-VIS.

The development of encoded porous silicon nanoparticles and application to forensic purpose (코드화 다공성 실리콘 나노입자의 개발 및 법과학적 응용)

  • Shin, Yeo-Ool;Kang, Sanghyuk;Lee, Joonbae;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • Porous silicon films are electrochemically etched from crystalline silicon wafers in an aqueous solution of hydrofluoric acid(HF). Careful control of etching conditions (current density, etch time, HF concentration) provides films with precise, reproducible physical parameters (morphology, porosity and thickness). The etched pattern could be varied due to (1) current density controls pore size (2) etching time determines depth and (3) complex layered structures can be made using different current profiles (square wave, triangle, sinusoidal etc.). The optical interference spectrum from Fabry-Perot layer has been used for forensic applications, where changes in the optical reflectivity spectrum confirm the identity. We will explore a method of identifying the specific pattern code and can be used for identities of individual code with porous silicon based encoded nanosized smart particles.