• 제목/요약/키워드: Nanoscale powder

검색결과 64건 처리시간 0.022초

수퍼커패시터용 Co/PVA복합전극의 전기화학적특성 (Electrochemical characteristics of Co/PVA composite electrode for supercapacitor)

  • 이희우;김한주;;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 2001
  • Very fine cobalt oxide ambigel powder were prepared using a unique solution chemistry associated with the sol-gel process. The mesoporous structure of the initial gel is maintained by removing fluid under conditions where the capillary forces that result extraction are either low or no existent, are either low or nonexistent. Controling both the pore and solid architecture on the nanoscale offers a strategy for the design of supercapacitor. But $CoO_{x}$ have the low voltage, so we experiment using CO/PVA composite electrode.

  • PDF

Nonlinear static behavior of three-layer annular plates reinforced with nanoparticles

  • Liu, Shouhua;Yu, Jikun;Ali, H. Elhosiny;Al-Masoudy, Murtadha M.
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.427-435
    • /
    • 2022
  • Static stability behaviors of annular sandwich plates constructed from two layers of particle-reinforced nanocomposites have been investigated in the present article. The type of nanoscale particles has been considered to be graphene oxide powders (GOPs). The particles are assumed to have uniform and graded dispersions inside the matrix and the material properties have been defined according to Halpin-Tsai micromechanical model. The core layer is assumed to have honeycomb configuration. Annular plate has been formulated according to thin shell assumptions considering geometrical nonlinearities. After solving the governing equations via Galerkin's technique, it is showed that the post-buckling curves of annular sandwich plates rely on the core wall thickness, amount of GOP particles, sector radius, and thickness of layers.

Development of Titanium Dioxide (TiO2)-immobilized Buoyant Photocatalyst Balls Using Expanded Polystyrene (EPS)

  • Joo, Jin Chul;Lee, Saeromi;Ahn, Chang Hyuk;Lee, Inju;Liu, Zihan;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • 제3권4호
    • /
    • pp.215-220
    • /
    • 2016
  • A new immobilization technique of nanoscale $TiO_2$ powder to expanded polystyrene (EPS) balls with temperature-controlled melting method was developed, and the photocatalytic activity of $TiO_2$ powder-embedded EPS balls were evaluated using methylene blue (MB) solution under ultraviolet irradiation (${\lambda}=254nm$). Based on the scanning electron microscope (SEM) images and associated energy-dispersive X-ray spectroscopy (EDX) analysis, the components of the intact EPS balls were mainly carbon and oxygen, whereas those of $TiO_2$-immobilized EPS balls were carbon, oxygen, and titanium, indicating that relatively homogenous patches of $TiO_2$ and glycerin film were coated on the surface of EPS balls. Based on the comparison of degradation efficiencies of MB between intact and $TiO_2$-immobilized EPS balls under UVC illumination, the degradation efficiencies of MB can be significantly improved using $TiO_2$-immobilized EPS balls, and surface reactions in heterogeneous photocatalysis were more dominant than photo-induced radical reactions in aqueous solutions. Thus, $TiO_2$-immobilized EPS balls were found to be an effective photocatalyst for photodegradation of organic compounds in aqueous solutions without further processes (i.e., separation, recycling, and regeneration of $TiO_2$ powder). Further study is in progress to evaluate the feasibility for usage of buoyant $TiO_2$-immobilized EPS to inhibit the excessive growth of algae in rivers and lakes.

CuO-Al2O3/camphene 슬러리의 동결건조 공정에 의한 Al2O3 입자분산 Cu 다공체 제조 (Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry)

  • 강현지;류도형;오승탁
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.25-29
    • /
    • 2018
  • Porous Cu with a dispersion of nanoscale $Al_2O_3$ particles is fabricated by freeze-drying $CuO-Al_2O_3$/camphene slurry and sintering. Camphene slurries with $CuO-Al_2O_3$ contents of 5 and 10 vol% are unidirectionally frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at $700^{\circ}C$ and $800^{\circ}C$ in $H_2$ atmosphere. The sintered samples show large pores of $100{\mu}m$ in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ${\sim}10{\mu}m$ in size. The size of the large pores decreases with increasing $CuO-Al_2O_3$ content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm $Al_2O_3$ particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and $H_2$ reducing process.

Synthesis and Characterization of Hollow Silicon-Carbon Composites as a Lithium Battery Anode Material

  • Han, Won-Kyu;Ko, Yong-Nam;Yoon, Chong-Seung;Choa, Yong-Ho;Oh, Sung-Tag;Kang, Sung-Goon
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.517-521
    • /
    • 2009
  • Si-C composite with hollow spherical structure was synthesized using ultrasonic treatment of organosilica powder formed by hydrolysis of phenyltrimethoxysilane. The prepared powder was pyrolyzed at various temperatures ranging from 900 to 1300 $^{\circ}C$ under nitrogen atmosphere to obtain optimum conditions for Li-ion battery anode materials with high capacity and cyclability. The XRD and elemental analysis results show that the pyrolyzed Si/C composite at 1100 $^{\circ}C$ has low oxygen and nitrogen levels, which is desirable for increasing the electrochemical capacity and reducing the irreversible capacity of the first discharge. The solid Si-C composite electrode shows a first charge capacity of $\sim$500 mAhg$^{-1}$ and a capacity fade within 30 cycles of 0.93% per cycle. On the other hand, the electrochemical performance of the hollow Si-C composite electrode exhibits a reversible charge capacity of $\sim$540 mAhg$^{-1}$ with an excellent capacity retention of capacity loss 0.43% per cycle up to 30 cycles. The improved electrochemical properties are attributed to facile diffusion of Li ions into the hollow shell with nanoscale thickness. In addition, the empty core space provides a buffer zone to relieve the mechanical stresses incurred during Li insertion.

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • 김진운;김경민;김용호;김수용;조수지;이응상;석중현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF

Co3(PO4)2로 표면코팅한 Li[Co0.1Ni0.15Li0.2Mn0.55]O2의 리튬 2차전지용 양극재 특성 (Cathode Characteristics of Co3(PO4)2-Coated [Co0.1Ni0.15Li0.2Mn0.55]O2 for Lithium Rechargeable Batteries)

  • 이상효;김광만;구본급
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.112-118
    • /
    • 2008
  • To prepare the high-capacity cathode material with improved electrochemical performances, nanoparticles of $C0_3(PO_4)_2$ were coated on the powder surface of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$, which was already synthesized by simple combustion method. The coated powders after the heat treatment at >$700^{\circ}C$ surely showed well-structured crystalline property with nanoscale surface coating layer, which was consisted of $LiCOPO_4$ phase formed from the reaction bwtween $CO_3(PO_4)_2$ and lithium impurities. In addition, cycle performance was particularly improved by the $CO_3(PO_4)_2$-coating for the cathode material for lithium rechargeable batteries.

Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles

  • Gang Yao;Hong-Yu Chen;Lai-Ma Luo;Xiang Zan;Yu-Cheng Wu
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2141-2152
    • /
    • 2024
  • Tungsten is the most promising plasma facing material for fusion reactors. Rolled W-Y2(Zr)O3 bulk material has been successfully produced in this study for future fusion engineering applications. The introduction of Zr is conducive to the refinement of the second phase particles. Nano-sized Y-Zr-O particles are observed in the powder and bulk samples. Related results show that the Y-Zr-O particle dispersion distribution improves the heat load resistance of W-Y2(Zr)O3 composite material. For four-point bend experiments in the same sampling direction, the DBTT of W-Y2(Zr)O3 composite materials is lower compared to the pure tungsten. For the same material, the DBTT of the material was selected for testing along the RD direction is lower compared to the material was selected for testing along the TD direction. Findings of this study provide suggestions for the subsequent industrial preparation of nanoscale particle-doped tungsten materials.

전자빔 증착을 위한 소결체 지르코니아의 열충격 저항성 연구 (A Study on the Thermal Shock Resistance of Sintered Zirconia for Electron Beam Deposition)

  • 오윤석;한윤수;채정민;김성원;이성민;김형태;안종기;김태형;김동훈
    • 한국추진공학회지
    • /
    • 제19권3호
    • /
    • pp.83-88
    • /
    • 2015
  • 열차폐 코팅(Thermal Barrier Coating) 기술의 하나로 연구되는 전자빔(EB, Electron Beam) 증착에 사용되는 코팅재료는 증착 공정 중에 고출력의 전자빔이 조사되기 때문에, 균일코팅을 위해서는 증착 중 코팅재료의 형상유지 및 안정한 융탕 형성이 필요하며, 이를 위해 적절한 밀도와 미세구조를 갖춘 잉곳(Ingot) 형태의 코팅소스가 요구된다. 본 연구에서는 8 wt%의 이트리아($Y_2O_3$)가 안정화제로 첨가된 지르코니아(8YSZ) 조성을 활용하여, 고출력 전자빔 조사환경에 사용가능한 잉곳제조를 위해 최적의 원료분말 조건을 확보하고자 하였다. 제조된 잉곳시료들에 대한 전자빔 조사 시, 수십 마이크론과 수십 나노 크기의 입자들로 구성된 혼합형 분말로 제조된 잉곳의 경우, 나노크기의 분말만으로 제조된 경우보다 향상된 열충격 저항성을 보였다.

Nano-ZnO/Laponite/PVA 광촉매 흡착볼의 메틸렌블루 제거효율 평가 (Evaluation on Removal Efficiency of Methylene Blue Using Nano-ZnO/Laponite/PVA Photocatalyzed Adsorption Ball)

  • 오주현;안호상;장대규;안창혁;이새로미;주진철
    • 대한환경공학회지
    • /
    • 제35권9호
    • /
    • pp.636-642
    • /
    • 2013
  • 광촉매인 나노크기의 산화아연(ZnO)과 흡착기능의 지지체인 Laponite, 결합제인 poly vinyl alcohol (PVA)를 혼합하여 붕산(boric acid)과 가교반응(crosslinking)을 통해 흡착과 광분해가 동시에 발생하며 회수가 불필요한 nano-ZnO/Laponite/PVA (ZLP) 광촉매 흡착볼을 개발하였다. ZLP 광촉매 흡착볼 제작을 위한 최적의 배합비는 Nano-ZnO:Laponite:PVA:deionized water의 구성비가 3:1:1:16 (by weight)으로 도출되었으며, PVA가 붕산과의 가교결합을 통해서 다층의 망(mesh network)과 막(film)을 형성하여 Laponite의 팽윤과 ZnO의 탈리 현상을 억제하는 것으로 사료된다. 수중안정성을 개선하고 비표면적을 높이기 위한 최적의 건조방법은 microwave를 활용하는 방법이며, SEM과 TEM의 분석을 통해 다양한 크기(55~500 ${\mu}m$)의 공극(pore)이 분포하며 ZnO의 균질한 분포를 확인할 수가 있었다. 메틸렌블루 광분해 특성은 반응 초기(40분)에는 Laponite와 메틸렌블루의 이온결합에 따른 흡착제거가 주요 제거 기작이며, 메틸렌블루의 흡착이 포화상태에 도달 후 광분해를 통한 제거가 발생함을 확인하여 흡착과 광분해가 동시에 발생하여 수중에 용해된 메틸렌 블루를 효과적으로 제거할 수 있음을 확인하였다. 본 연구를 통해 짧은 시간에 흡착과 광분해가 동시에 진행되어 난분해성 오염물질을 효과적으로 제거하는 광촉매 흡착볼의 제작이 가능하며, 나노물질의 탈리로 인해 발생하는 환경 및 수용체에 미치는 위해성도 최소화 할 수 있을 것으로 판단된다.