• Title/Summary/Keyword: Nanoparticle Surface Deposition

Search Result 48, Processing Time 0.03 seconds

Study on the TiO2-Ag Nanoparticle Coated PET Fabric with an Atomizer (아토마이저를 이용한 PET 직물의 TiO2-Ag 나노입자 코팅 연구)

  • Lee, Hyun Woo;Hong, Tae Min;Son, Han-Geul;Lim, Sung Chan;Shin, Weon Gyu;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • In this study, $TiO_2$ and Ag powders were deposited on the PET fabric using an atomizer in order to study the characteristics of particle deposited fabric. To improve the particle deposition, the surface of the fabric was pre-treated with an electron beam and its effect was studied with the deposition of those elements on the fabric. The SEM was used to observe the morphology of the deposition fabric and through the EDS analysis, the deposition of $TiO_2$ and Ag was confirmed. Also, the absorbance of the particle deposited fabric was measured using the Methylene Blue to verify the photolysis nature of $TiO_2$. Moreover, the antibiotic nature of Ag on the surface of the PET fabric was identified through the antibiosis test.

Comparison of Airborne Nanoparticle Concentrations between Carbon Nanotubes Growth Laboratories based on Containment of CVD (탄소나노튜브 성장 실험실에서 CVD 밀폐 여부에 따른 공기 중 나노입자 농도 비교)

  • Ha, Ju-Hyun;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • Although the usage of nanomaterials including carbon nanotubes (CNTs) has increased in various fields, scientific researches on workers' exposures and controls of these materials are very limited. The purpose of this study was to compare the airborne nanoparticles concentrations from two university laboratories conducting experiments of CNTs growth based on containment of thermal chemical vapor deposition (CVD). Airborne nanoparticle concentrations in three metrics (surface area concentration, particle number concentration, and mass concentrations) were measured by task using three direct reading instruments. In a laboratory where CVD was not contained, the surface area concentration, number concentration and mass(PM$_1$) concentration of airborne nanoparticles were 1.5 to 3.5 times higher than those in the other laboratory where CVD was confined. The ratio of PM$_1$ concentration to total suspended particles(TSP) in the laboratory where CVD was not confined was about 4 times higher than that in the other laboratory. This indicates that CVD is a major source of airbone nanoparticles in the CNTs growth laboratories. In conclusion, researchers performing CNTs growth experiments in these laboratories were exposed to airborne nanoparticles levels higher than background levels, and their exposures in a laboratory with the unconfined CVD were higher than those in the other laboratory with the confined CVD. It is recommended that in the CNTs growth laboratories adequate controls including containment of CVD be implemented for minimizing researchers' exposures to airborne nanoparticles.

The Role of Surface Oxide of Metal Nanoparticles on Catalytic Activity of CO Oxidation Unraveled with Ambient Pressure X-ray Photoelectron Spectroscopy

  • Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.132-132
    • /
    • 2013
  • Colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has brought new opportunities to unravel the surface structure of working catalysts. Recent studies suggest that surface oxides on transition metal nanoparticles play an important role in determining the catalytic activity of CO oxidation. In this talk, I will outline the recent studies on the influence of surface oxides on Rh, Pt, Ru and Co nanoparticles on the catalytic activity of CO oxidation [1-3]. Transition metal nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. APXPS studies exhibited the reversible formation of surface oxides during oxidizing, reducing, and CO oxidation reaction [4]. General trend is that the smaller nanoparticles exhibit the thicker surface oxides, while the bigger ones have the thin oxide layers. Combined with the nature of surface oxides, this trend leads to the different size dependences of catalytic activity. Such in situ observations of metal nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications. I will also show that the surface oxide can be engineered by using the simple surface treatment such as UV-ozone techniques, which results in changing the catalytic activity [5]. The results suggest an intriguing way to tune catalytic activity via engineering of the nanoscale surface oxide.

  • PDF

Control the Work Function and Plasmon Effect on Graphene Surface Using Metal Nanoparticles for High Performance Optoelectronics

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.166.1-166.1
    • /
    • 2014
  • We have controlled the graphene surface in two ways to improve the device performance of optoelectronics based on graphene transparent conductive films. We controlled multilayer graphene (MLG) work function and localized surface plasmon resonance wavelength using a silver nanoparticles formed on graphene surface. Graphene substrates were prepared using a chemical vapor deposition and transfer process. Various size of silver nanoparticles were prepared using a thermal evaporator and post annealing process on graphene surface. Silver nanoparticles were confirmed by using scanning electron microscopy (SEM). Work functions of graphene surface with various sizes of Ag nanoparticles were measured using ultraviolet photoelectron spectroscopy (UPS). The result shows that the work functions of MLG could be controlled from 4.39 eV to 4.55 eV by coating different amounts of silver nanoparticles while minimal changes in the sheet resistance and transmittance. Also the Localized surface plasmon resonance (LSPR) wavelength was investigated according to various sizes of silver nanoparticles. LSPR wavelength was measured using the absorbance spectrum, and we confirmed that the resonance wavelength could be controlled from 396nm to 425nm according to the size of silver nanoparticles on graphene surface. To confirm improvement of the device performance, we fabricated the organic solar cell based on MLG electrode. The results show that the work function and plasmon resonance wavelength could be controlled to improve the performance of optoelectronics device.

  • PDF

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1199-1203
    • /
    • 2012
  • Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.

Importance of Green Density of Nanoparticle Precursor Film in Microstructural Development and Photovoltaic Properties of CuInSe2 Thin Films

  • Hwang, Yoonjung;Lim, Ye Seul;Lee, Byung-Seok;Park, Young-Il;Lee, Doh-Kwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.471.2-471.2
    • /
    • 2014
  • We demonstrate here that an improvement in precursor film density (green density) leads to a great enhancement in the photovoltaic performance of CuInSe2 (CISe) thin film solar cells fabricated with Cu-In nanoparticle precursor films via chemical solution deposition. A cold-isostatic pressing (CIP) technique was applied to uniformly compress the precursor film over the entire surface (measuring 3~4 cm2) and was found to increase its relative density (particle packing density) by ca. 20%, which resulted in an appreciable improvement in the microstructural features of the sintered CISe film in terms of lower porosity, reduced grain boundaries, and a more uniform surface morphology. The low-bandgap (Eg=1.0 eV) CISe PV devices with the CIP-treated film exhibited greatly enhanced open-circuit voltage (VOC, from 0.265 V to 0.413 V) and fill factor (FF, from 0.34 to 0.55), as compared to the control devices. As a consequence, an almost 3-fold increase in the average power conversion efficiency, 3.0 to 8.2% (with the highest value of 9.02%), was realized without an anti-reflection coating. A diode analysis revealed that the enhanced VOC and FF were essentially attributed to the reduced reverse saturation current density (j0) and diode ideality factor (n). This is associated with the suppressed recombination, likely due to the reduction in recombination sites such as grain/air surfaces (pores), inter-granular interfaces, and defective CISe/CdS junctions in the CIP-treated device. From the temperature dependences of VOC, it was confirmed that the CIP-treated devices suffer less from interface recombination.

  • PDF

Enhanced flux pinning property of GdBa2Cu3O7-x films by ferromagnetic surface decoration

  • Song, C.Y.;Oh, J.Y.;Ko, Y.J.;Lee, J.M.;Kang, W.N.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.21-25
    • /
    • 2020
  • We investigated the flux pinning property of GdBa2Cu3O7-x (GdBCO) films on top of La0.7Sr0.3MnO3 (LSMO) nanoparticles deposited by a surface decoration. Both GdBCO films and LSMO nano particles were deposited by pulsed laser deposition and the number of laser pulses were varied from 80 to 320 in order to control the density of the LSMO nanoparticles. The magnetization data at 77 K showed that the critical current density (Jc) was enhanced in all of the GdBCO films with LSMO nanoparticles and that the Jc enhancement was found to be inversely proportional to the LSMO nanoparticle density. Structural analyses revealed that LSMO nanoparticles induce a compressive strain in the GdBCO films resulting in a disordering in the CuO2 plane. Therefore, the enhanced flux pinning property in the GdBCO with LSMO nanoparticles was attributed to the competing effect between the increase of pinning centers and the increase of compressive strain in the superconducting phase.

Hybrids of Au nanodishes and Au nanoparticles

  • Son, Jin Gyeong;Han, Sang Woo;Lee, Tae Geol;Wi, Jung-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.228.1-228.1
    • /
    • 2015
  • We demonstrate a simple route to hybridize two different nanomaterials by using three-dimensional nanodishes that can be used as small plasmonic containers to host guest nanoparticles. Our nanodishes were fabricated using nanoimprint lithography and oblique-angle film deposition, and the guest nanoparticles were drop-casted onto the host nanodishes. Based on the proposed method, colloidal Au nanoparticles were assembled inside Au nanodishes in the form of a labyrinth. These Au nanoparticle-nanodish hybrids excited a strong surface plasmon resonance, as verified by a numerical simulation of the local field enhancement and by direct observation of the enhanced Raman signals. Our results point to the potential of the nanodishes as a useful platform for combining diverse nanomaterials and their functionalities.

  • PDF

Fabrication of Nanogap-Based PNA Chips for the Electrical Detection of Single Nucleotide Polymorphism

  • Park, Dae-Keun;Park, Hyung-Ju;Lee, Cho-Yeon;Hong, Dae-Wha;Lee, Young;Choi, In-Sung S.;Yun, Wan-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.540-540
    • /
    • 2012
  • Selective detection of single nucleotide polymorphism (SNP) of Cytochrome P450 2C19 (CYP2C19) was carried out by the PNA chips which were electrically-interfaced with interdigitated nanogap electrodes (INEs). The INEs whose average gap distance and effective gap length were about ~70 nm and ${\sim}140{\mu}m$, respectively, were prepared by the combination of the photo lithography and the surface-catalyzed chemical deposition, without using the e-beam lithography which is almost inevitable in the conventional lab-scale fabrication of the INEs. Four different types of target DNAs were successfully detected and discriminated by the INE-based PNA chips.

  • PDF