• Title/Summary/Keyword: Nanoimprint

Search Result 199, Processing Time 0.028 seconds

Characteristics of hybrid mask mold for combined nanoimprint and photolithography technique

  • MOON KANSHUN;CHOI BANGLIM;PARK IN-SUNG;HONG SUNSHUM;YANG KIHYUN;LEE HEON;AHN JINHO
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.147-150
    • /
    • 2005
  • We process a novel approach cal led combined nanoimprint and photolithography (CNP) to greatly simplify the fabrication in conventional nanoimprint lithography (NIL). In this study, a novel HMM with anti-sticking $SiO_2$ layer is introduced to improve the quality of transferred pattern. The surface property was investigated using contact angle measurement and spectrophotometer. Replicate pattern with CNP using HMM showed complete pattern transfer without defect.

  • PDF

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

Fabrication of 70nm-sized metal patterns on flexible PET Film using nanoimprint lithography

  • Lee, Heon;Lee, Jong-Hwa
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1119-1120
    • /
    • 2007
  • Nano-sized metal patterns were successfully fabricated on flexible PET substrate using nanoimprint lithography. 70nm line and space PMMA resist pattern was formed on PET substrate without residual layer by 'artial filling effect' and 20nm thin Cr metal layer was deposited by e-beam evaporation. Then, PMMA resist was selectively removed by acetone and 70nm narrow Cr pattern was formed.

  • PDF

Fabrication of high ordered nano-sphere array on curved substrate by nanoimprint lithography

  • Hong, Seong-Hun;Bae, Byeong-Ju;Lee, Heon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.127-127
    • /
    • 2008
  • The replica of highly ordered nano-sphere array patterns were fabricated using hot embossing method. The polymer replica was coated with silcon dioxide layer and self-assembled monolayer. Using UV nanoimprint lithography with the template, highly ordered nano-sphere array patterns were clearly fabricated on curved substrate.

  • PDF

Fabrication of 70nm-sized metal patterns on flexible PET Film using nanoimprint lithography

  • Lee, Heon;Lee, Jong-Hwa
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.24-25
    • /
    • 2007
  • Nano-sized metal patterns were successfully fabricated on flexible PET substrate using nanoimprint lithography. 70nm line and space PMMA resist pattern was formed on PET substrate without residual layer by "partial filling effect' and 20nm thin Cr metal layer was deposited by e-beam evaporation. Then, PMMA resist was selectively removed by acetone and 70nm narrow Cr pattern was formed.

  • PDF

A Viscoelasitc Finite Element Analysis of Thermal Nanoimprint Lithography Process (열-나노임프린트 공정의 점탄성 유한요소해석)

  • Kim, Nam-Woong;Kim, Kug-Weon;Sin, Hyo-Chol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. To successfully imprint a nano-sized pattern, the process conditions such as temperature, pressure, and time should be appropriately selected. This starts with a clear understanding of polymer material behavior during the NIL process. In this work, the squeezing of thin polymer films into nanocavities during the thermal NIL has been investigated based upon a two-dimensional viscoelastic finite element analysis in order to understand how the process conditions affect a pattern quality. The simulations have been performed within the viscoelastic plateau region and the stress relaxation effect has been taken into account.

  • PDF

Analysis of Nonniformity of Residual Layer Thickness on UV-Nanoimprint Using an EPS(Elementwise Patterned Stamp) (EPS(Elementwise Patterned Stamp)를 이용한 UV 나노임프린트 공정에서 웨이퍼 변형에 따른 잔류층 분석)

  • Kim Ki-Don;Sim Young-Suk;Sohn Hyonkee;Lee Eung-Sug;Lee Sang-Chan;Fang Lingmei;Jeong Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1169-1174
    • /
    • 2005
  • Imprint lithography is a promising method for high-resolution and high-throughput lithography using low-cost equipment. In particular, ultraviolet-nanoimprint lithography (UV-NIL) is applicable to large area imprint easily. We have proposed a new UV-NIL process using an elementwise patterned stamp (EPS), which consists of a number of elements, each of which is separated by channel. Experiments on UV-NIL are performed on an EVG620-NIL using the EPS with 3mm channel width. The replication of uniform sub 70 nm lines using the EPS is demonstrated. We investigate the nonuniformity of residual layer caused by wafer deformation in experiment with varying wafer thickness. Severely deformed wafer works as an obstacle in spreading of dropped resin, which causes nonuniformity of thickness of residual layer. Numerical simulations are conducted to analyze aforementioned phenomenon. Wafer deformation in the process is simulated by using a simplified model, which is a good agreement with experiments.