• Title/Summary/Keyword: Nanogenerator

Search Result 55, Processing Time 0.032 seconds

Nanogenerator Device Based on Piezoelectric Active Layer of ZnO-Nanowires/PVDF Composite (ZnO-나노와이어/PVDF 복합체를 압전 활성층으로 한 나노발전기 소자)

  • Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.740-745
    • /
    • 2014
  • ZnO nanowires were grown by hydrothermal synthesis process and piezoelectric poly vinylidene fluoride (PVDF) was then coated on top of the ZnO-nanowires by spray-coating technique. The composite layer of ZnO-nanowires/PVDF was applied to an energy harvesting device based on piezoelectric-conversion mechanism. A defined mechanical force was given to the nanogenerator device to evaluate their electric power generation characteristics, where output current density and voltage were examined. Electric power generation property of the ZnO-nanowires/PVDF based nanogenerator device was compared to that of the nanogenerator device with ZnO-nanowires as single active layer. Effect of the ZnO-nanowires on improvement of power generation was discussed to examine its feasibility for the nanogenerator device.

Highly Efficient, Flexible Thin Film Nanogenerator

  • Lee, Geon-Jae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.10.1-10.1
    • /
    • 2011
  • Energy harvesting technologies converting external sources (such as thermal energy, vibration and mechanical energy from the nature sources of wind, waves or animal movements) into electrical energy is recently a highly demanding issue in the materials science community for making sustainable green environments. In particular, fabrication of usable nanogenerator attract the attention of many researchers because it can scavenge even the biomechanical energy inside the human body (such as heart beat, blood flow, muscle stretching, or eye blinking) by converging harvesting technology with implantable bio-devices. Herein, we describe procedure suitable for generating and printing a lead-free microstructured $BaTiO_3$ thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible $BaTiO_3$ thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of $BaTiO_3$ thin film nanogenerator and the integration of bio-eco-compatible ferroelectric materials may enable innovative opportunities for artificial skin and energy harvesting system.

  • PDF

Flexible ZnO Nanogenerator의 내구성 개선을 통한 효율 향상 연구

  • Gang, Mul-Gyeol;Kim, Seong-Hyeon;Kim, Seon-Min;Jo, Jin-U;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.606-606
    • /
    • 2013
  • ZnO nanowire를 기반으로 하는 nanogenerator는 미세한 움직임을 전기 에너지로 변환 시키는 압전 에너지 하베스팅 기술로 기존 에너지 하베스터와 비교하여 사용환경의 제약이 적고, 소형화가 가능한 장점으로 주목을 받고 있다. 특히 혈류, 심장박동, 호흡 등 인체 활동 에너지를 이용한 발전 소자 등의 활용이 가능하여 활발한 연구가 진행되고 있다. 하지만, 최근 발표된 film like generator나 lateral 구조의 nanogenerator는 nanowire의 구조 취약성으로 인해 내구성이 좋지 못한 단점이 있다. 본 연구에서는 nanogenerator의 내구성을 향상시키기 위해 capping layer로 실리콘 계 유무기 하이브리드를 적용하고자 하였다. 또한 상부 전극을 CNT-Ag소재로 대체하여 유연기판에 대응코자 하였다. 코팅 물질 및 코팅 방법을 최적화하고, 내구성 테스트를 실시하였고, 소자의 발전 특성은 PVDF generator와 비교분석하였다.

  • PDF

O2 plasma를 이용한 Flexible ZnO nanogenerator 특성 향상 연구

  • Gang, Mul-Gyeol;Park, Seong-Hwak;Ju, Byeong-Gwon;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.283.1-283.1
    • /
    • 2013
  • ZnO nanowire를 기반으로 하는 nanogenerator는 미세한 움직임을 전기 에너지로 변환 시키는 압전 에너지 하베스팅 기술로 기존 에너지 하베스터와 비교하여 사용환경의 제약이 적고, 소형화가 가능한 장점으로 주목을 받고 있다. 특히 혈류, 심장박동, 호흡 등 인체 활동 에너지를 이용한 발전 소자 등의 활용이 가능하여 활발한 연구가 진행되고 있다. 하지만, 최근 발표된 film like Vertical 구조의 nanogenerator는 nanowire의 구조 취약성으로 인해 내구성이 좋지 못한 단점이 있다. 또한 ZnO nanowire의 내부 O2 결함 및 표면 OH-기의 흡착에 의한 특성 저하가 나타난다. 본 연구에서는 nanogenerator의 내구성을 향상시키기 위해 capping layer로 실리콘 계 유무기 하이브리드를 적용하여 코팅 물질 및 코팅 방법을 최적화 하였으며 상부 전극을 CNT-Ag nanowire 소재로 대체하여 유연기판에 대응코자 하였다. 또한 APP(Atmosphere Pressure Plasma)와 ICP(Inductively Coupled Plasma)장비를 사용하여 ZnO nanowire를 표면처리하였고, 각각의 플라즈마 표면처리의 영향에 대해 조사하였다. XPS를 통하여 OH-기의 제거 유무를 확인하였으며, 소자의 발전 특성의 향상을 확인 하였다.

  • PDF

Fabrication of triboelectric nanogenerator for self-sufficient power source application (자가발전활용을 위한 마찰전기 나노발전소자의 제작)

  • Shin, S.Y.;Kim, S.J.;Saravanakumar, Balasubramaniam
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.589-590
    • /
    • 2013
  • The fast development of electronic devices towards wireless, portable and multi-functionality desperately needs the self-powered and low maintenance power sources. The possibility to coupling the nanogenerator to wearable and portable electronic device facilitates the self powered device with independent and self sustained power source. Nanogenerator has ability to convert the low frequency mechanical vibration to electrical energy which is utilized to drive the electronic device [1]. The self powered power source has the ability to generate the power from environment and human activity has attracted much interest because of place and time independent. The human body motion based energy harvesting has created huge impact for future self powered electronics device applications. The power generated from the human body motion is enough to operate the future electronic devices. The energy harvesting from human body motion based on triboelectric effect has simple, cost-effective method [2, 3] and meet the required power density of devices. However, its output is still insufficient to driving electronic devices in continues manner so new technology and new device architecture required to meet required power. In the present work, we have fabricated the triboelectric nanogenerator using PDMS polymer. We have studied detail about the power output of the device with respect to different polymer thickness and varied separation distance.

  • PDF

Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications (Polytetrafluoroethylene 분말 현탁액을 통한 다공성 박막 제조 및 에너지 발생소자 응용)

  • Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • Porous polytetrafluoroethylene (PTFE) thin films are fabricated by spin-coating using a dispersion solution containing PTFE powders, and their crystalline properties are investigated after thermal annealing at various temperatures ranging from 300 to $500^{\circ}C$. Before thermal annealing, the film is densely packed and consists of many granular particles 200-300 nm in diameter. However, after thermal annealing, the film contains many voids and fibrous grains on the surface. In addition, the film thickness decreases after thermal annealing owing to evaporation of the surfactant, binder, and solvent composing the PTFE dispersion solution. The film thickness is systematically controlled from 2 to $6.5{\mu}m$ by decreasing the spin speed from 1,500 to 500 rpm. A triboelectric nanogenerator is fabricated by spin-coating PTFE thin films onto polished Cu foils, where they act as an active layer to convert mechanical energy to electrical energy. A triboelectric nanogenerator consisting of a PTFE layer and Al metal foil pair shows typical output characteristics, exhibiting positive and negative peaks during applied strain and relief cycles due to charging and discharging of electrical charge carriers. Further, the voltage and current outputs increase with increasing strain cycle owing to accumulation of electrical charge carriers during charge-discharge.

Evaluating the performance and characteristics of Rutile TiO2 thin film for Triboelectric Nanogenerator (TENG) (Triboelectric Nanogenerator (TENG)를 위한 Rutile TiO2 박막 성능 및 특성 평가)

  • Moon, Ji-Hyeon;Kim, Han-Jae;Kim, Hyo-Bae;Ahn, Ji-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.324-330
    • /
    • 2021
  • As energy harvesting technology becomes important in relation to environmental issues, piezoelectric materials that convert mechanical energy into electrical energy are attracting attention. However, PZT, a representative material for piezoelectricity, is becoming difficult to use due to the problem that its components can cause environmental pollution. For this reason, recent research suggests a triboelectric nanogenerator (TENG) that generates energy through the combined effect of triboelectricity and electric induction for alternative piezoelectric devices. In TENG, electrical power is determined by the dielectric constant, thickness, and grain generation of the charged material. Therefore, in this study, a Rutile phase TiO2 thin film with high dielectric constant was formed using the spin-coating process and the effect of annealing was investigated. For electrical analysis, a TENG device was fabricated using PTFE as a material with an opposite charge, and electrical output according to film thickness and grain formation was comparatively analyzed.

ZnO Nanowire를 이용한 2D 배열 구조 제작

  • Im, Yeong-Taek;No, Im-Jun;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.603-603
    • /
    • 2013
  • 3D 배열구조의 Vertical nanowire Integrated Nanogenerator (VING)은 낮은 출력, 유연 기판 상에 부적합, 나노선의 부서지기 쉬움, 장기 안정성, 균일한 나노선의 성장을 필요로 하는 문제점을 가지고 있다. 본 연구에서는 이러한 VING방식의 단점을 보완하여 2D 배열 구조의 Lateral nanowire Integrated Nanogenerator (LING)로 고출력 전압, 유연기판의 상에 적합 등을 개선하는 방향으로 연구를 하였다. 본 연구의 실험 방법으로는 RF magnetron sputter를 이용하여 AZO Seedlayer를 제작하였으며 제작된 AZO Seedlayer를 photolithography 공정으로 제작하였다. 패터닝된 샘플을 Hydro thermal synthesis method로 성장시켰다. 구조적 분석으로는 XRD, FE-SEM 등을 이용하여 측정하였다.

  • PDF

Fabrication and Characterization of Triboelectric Nanogenerator based on Porous Animal-collagen (다공성 동물성-콜라겐을 이용한 마찰전기 나노발전기 제작 및 특성평가)

  • Shenawar Ali Khan;Sheik Abdur Rahman;Woo Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.179-187
    • /
    • 2023
  • Nanogenerators containing biomaterials are eco-friendly electronic devices in terms of being a non-polluting energy source and biodegradable electronic waste. In particular, the amount of waste will be also reduced if the biomaterial can be extracted from biowaste. In this study, a triboelectric nanogenerator was fabricated using animal collagen present in the skin of a mammal and its characteristion was proformed. The electro-anodic layer of the triboelectric nanogenerator was constructed by forming a collagen film using the spin coating method, and it was confirmed that the film was porous from scanning electron microscopy. The fabricated triboelectric nanogenerator exhibited an open-circuit voltage from 7 V at 3 Hz to 15 V at 5 Hz due to periodic mechanical movement, and a short-circuit current of 3.8 uA at 5 Hz. In conclusion, collagen-containing triboelectric nanogenerators can be power source for low-power operating devices such as sensors and are also expected to be useful for reducing electronic waste.

Kinematic Design of High-Efficient Rotational Triboelectric Nanogenerator (고효율 회전형 정전 나노 발전기의 기구학적 설계)

  • Jihyun Lee;Seongmin Na;Dukhyun Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.106-111
    • /
    • 2024
  • A triboelectric nanogenerator is a promising energy harvester operated by the combined mechanism of electrostatic induction and contact electrification. It has attracting attention as eco-friendly and sustainable energy generators by harvesting wasting mechanical energies. However, the power generated in the natural environment is accompanied by low frequencies, so that the output power under such input conditions is normally insufficient amount for a variety of industrial applications. In this study, we introduce a non-contact rotational triboelectric nanogenerator using pedaling and gear systems (called by P-TENG), which has a mechanism that produces high power by using rack gear and pinion gear when a large force by a pedal is given. We design the system can rotate the shaft to which the rotor is connected through the conversion of vertical motion to rotational motion between the rack gear and the pinion gear. Furthermore, the system controls the one directional rotation due to the engagement rotation of the two pinion gears and the one-way needle roller bearing. The TENG with a 2 mm gap between the rotor and the stator produces about the power of 200 ㎼ and turns on 82 LEDs under the condition of 800 rpm. We expect that P-TENG can be used in a variety of applications such as operating portable electronics or sterilizing contaminated water.