• 제목/요약/키워드: Nanog

검색결과 81건 처리시간 0.026초

P19 배아 암종 줄기세포에서 RNA 간섭에 의한 Nanog 유전자 발현의 특이적 억제 (Specific Knockdown of Nanog Expression by RNA Interference in P19 Embryonal Carcinoma Stem Cells)

  • 최승철;임도선
    • 한국발생생물학회지:발생과생식
    • /
    • 제12권2호
    • /
    • pp.159-168
    • /
    • 2008
  • Nanog is a newly identified member of the homeobox family of DNA binding transcription factors that functions to maintain the undifferentiated state of stem cells. However, molecular mechanisms underlying the function of Nanog remain largely unknown. To elucidate the regulatory roles of Nanog involved in maintenance of P19 embryonal carcinoma (EC) stem cells, we transfected three small interfering RNA (siRNA) duplexes targeted against different regions of the Nanog gene into P19 cells. The Nanog siRNA-100 duplexes effectively decreased the expression of Nanog up to 30.7% compared to other two Nanog siRNAs, the Nanog siRNA-400 (67.9 %) and -793 (53.0%). When examined by RT-PCR and real-time PCR, the expression of markers for pluripotency such as Fgf4, Oct3/4, Rex1, Sox1 and Yes was downregulated at 48 h after transfection with Nanog siRNA-100. Furthermore, expression of the ectodermal markers, Fgf5 and Isl1 was reduced by Nanog knockdown. By contrast, the expression of other markers for pluripotency such as Cripto, Sox2 and Zfp57 was not affected by Nanog knockdown at this time. On the other hand, the expression of Lif/Stat3 pathway molecules and of the endoderm markers including Dab2, Gata4, Gata6 and the germ cell nuclear factor was not changed by Nanog knockdown. The results of this study demonstrated that the knockdown of Nanog expression by RNA interference in P19 cells was sufficient to modulate the expression of pluripotent markers involved in the self-renewal of EC stem cells. These results provide the valuable information on potential downstream targets of Nanog and add to our understanding of the function of Nanog in P19 EC stem cells.

  • PDF

OCT4와 SOX2에 의한 인간 Nanog 유전자의 전사 조절 (Transcriptional Regulation of Human Nanog Gene by OCT4 and SOX2)

  • 석현정;김영은;박정아;이영희
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권2호
    • /
    • pp.123-129
    • /
    • 2010
  • 배아 줄기세포는 미분화상태에서 자가 재생을 유지할 수 있다. 자가 재생은 OCT4, SOX2와 NANOG와 같은 많은 인자들이 작용한다. 생쥐 배아 줄기세포에서 OCT4와 SOX2가 Nanog 프로모터에 결합하여 Nanog 유전자의 발현을 촉진한다는 사실은 생쥐 promoter에 관한 정밀분석으로 알려져 있다. 본 연구에서는 인간 Nanog promoter를 정밀 분석하기 위해 연속적인 결손 돌연변이를 가진 promoter-reporter construct를 제조하였다. Promoter의 최대 활성은 0.6 kb(-253/+365) promoter-reporter construct에서 발견되었으며, 이 construct에는 OCT4 및 SOX2의 결합부위가 포함된다. OCT4와 SOX2의 기여도를 확인하기 위하여 OCT4 및 SOX2의 결합부위에 자리 특이적 돌연변이를 유도하고 promoter 활성에 미치는 영향을 조사한 결과, OCT4나 SOX2 어느 한 군데라도 돌연변이가 존재하면 promoter 활성이 현저히 저해되었다. 본 연구 결과를 통해 인간 Nanog 유전자 발현에 있어 OCT4 및 SOX2가 필수적임을 직접적으로 확인할 수 있었다.

Characterization of the porcine Nanog 5'-flanking region

  • Memon, Azra;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.449-456
    • /
    • 2018
  • Objective: Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods: To characterize the porcine Nanog promoter, the 5'-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5'-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results: Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from -99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion: We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.

NANOG expression in parthenogenetic porcine blastocysts is required for intact lineage specification and pluripotency

  • Mingyun Lee;Jong-Nam Oh;Gyung Cheol Choe;Kwang-Hwan Choi;Dong-Kyung Lee;Seung-Hun Kim;Jinsol Jeong;Yelim Ahn;Chang-Kyu Lee
    • Animal Bioscience
    • /
    • 제36권12호
    • /
    • pp.1905-1917
    • /
    • 2023
  • Objective: Nanog homeobox (NANOG) is a core transcription factor that contributes to pluripotency along with octamer binding transcription factor-4 (OCT4) and sex determining region-Y box-2 (SOX2). It is an epiblast lineage marker in mammalian pre-implantation embryos and exhibits a species-specific expression pattern. Therefore, it is important to understand the lineage of NANOG, the trophectoderm, and the primitive endoderm in the pig embryo. Methods: A loss- and gain-of-function analysis was done to determine the role of NANOG in lineage specification in parthenogenetic porcine blastocysts. We analyzed the relationship between NANOG and pluripotent core transcription factors and other lineage makers. Results: In NANOG-null late blastocysts, OCT4-, SOX2-, and SOX17-positive cells were decreased, whereas GATA binding protein 6 (GATA6)-positive cells were increased. Quantitative real-time polymerase chain reaction revealed that the expression of SOX2 was decreased in NANOG-null blastocysts, whereas that of primitive endoderm makers, except SOX17, was increased. In NANOG-overexpressing blastocysts, caudal type homeobox 2 (CDX2-), SOX17-, and GATA6-positive cells were decreased. The results indicated that the expression of primitive endoderm markers and trophectoderm-related genes was decreased. Conclusion: Taken together, the results demonstrate that NANOG is involved in the epiblast and primitive endoderm differentiation and is essential for maintaining pluripotency within the epiblast.

Characterization of the Nanog 5'-flanking Region in Bovine

  • Choi, Don-Ho;Kim, Duk-Jung;Song, Ki-Duk;Park, Hwan-Hee;Ko, Tae Hyun;Pyao, Yuliya;Chung, Ku-Min;Cha, Seok Ho;Sin, Young-Su;Kim, Nam-Hyung;Lee, Woon-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1383-1391
    • /
    • 2016
  • Bovine embryonic stem cells have potential for use in research, such as transgenic cattle generation and the study of developmental gene regulation. The Nanog may play a critical role in maintenance of the undifferentiated state of embryonic stem cells in the bovine, as in murine and human. Nevertheless, efforts to study the bovine Nanog for pluripotency-maintaining factors have been insufficient. In this study, in order to understand the mechanisms of transcriptional regulation of the bovine Nanog, the 5'-flanking region of the Nanog was isolated from ear cells of Hanwoo. Results of transient transfection using a luciferase reporter gene under the control of serially deleted 5'-flanking sequences revealed that the -134 to -19 region contained the positive regulatory sequences for the transcription of the bovine Nanog. Results from mutagenesis studies demonstrated that the Sp1-binding site that is located in the proximal promoter region plays an important role in transcriptional activity of the bovine Nanog promoter. The electrophoretic mobility shift assay with the Sp1 specific antibody confirmed the specific binding of Sp1 transcription factor to this site. In addition, significant inhibition of Nanog promoter activity by the Sp1 mutant was observed in murine embryonic stem cells. Furthermore, chromatin-immunoprecipitation assay with the Sp1 specific antibody confirmed the specific binding of Sp1 transcription factor to this site. These results suggest that Sp1 is an essential regulatory factor for bovine Nanog transcriptional activity.

Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells

  • Jang, Hye-Jeong;Park, Hwan Hee;Tran, Thi Thuy Linh;Lee, Hak-Kyo;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권12호
    • /
    • pp.1721-1728
    • /
    • 2015
  • Embryonic stem cells (ESCs) have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (-420/+181) bovine NANOG 5'-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP) as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (-420/+181) promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.

No Relevance of NF-${\kappa}B$ in the Transcriptional Regulation of Human Nanog Gene in Embryonic Carcinoma Cells

  • Seok, Hyun-Jeong;Kim, Young-Eun;Park, Jeong-A;Lee, Young-Hee
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2011
  • Embryonic stem (ES) cells can self-renew maintaining the undifferentiated state. Self renewal requires many factors such as Oct4, Sox2, FoxD3, and Nanog. NF-${\kappa}B$ is a transcription factor involved in many biological activities. Expression and activity of NF-${\kappa}B$ increase upon differentiation of ES cells. Reportedly, Nanog protein directly binds to NF-${\kappa}B$ protein and inhibits its activity in ES cells. Here, we found a potential binding site of NF-${\kappa}B$ in the human Nanog promoter and postulated that NF-${\kappa}B$ protein may regulate expression of the Nanog gene. We used human embryonic carcinoma (EC) cells as a model system of ES cells and confirmed decrease of Nanog and increase of NF-${\kappa}B$ upon differentiation induced by retinoic acid. Although deletion analysis on the DNA fragment including NF-${\kappa}B$ binding site suggested involvement of NF-${\kappa}B$ in the negative regulation of the promoter, site-directed mutation of NF-${\kappa}B$ binding site had no effect on the Nanog promoter activity. Furthermore, no direct association of NF-${\kappa}B$ with the Nanog promoter was detected during differentiation. Therefore, we conclude that NF-${\kappa}B$ protein may not be involved in transcriptional regulation of Nanog gene expression in EC cells and possibly in ES cells.

Far Beyond Cancer Immunotherapy: Reversion of Multi-Malignant Phenotypes of Immunotherapeutic-Resistant Cancer by Targeting the NANOG Signaling Axis

  • Se Jin Oh;Jaeyoon Lee;Yukang Kim;Kwon-Ho Song;Eunho Cho;Minsung Kim;Heejae Jung;Tae Woo Kim
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.7.1-7.11
    • /
    • 2020
  • Cancer immunotherapy, in the form of vaccination, adoptive cellular transfer, or immune checkpoint inhibitors, has emerged as a promising practice within the field of oncology. However, despite the developing field's potential to revolutionize cancer treatment, the presence of immunotherapeutic-resistant tumor cells in many patients present a challenge and limitation to these immunotherapies. These cells not only indicate immunotherapeutic resistance, but also show multi-modal resistance to conventional therapies, abnormal metabolism, stemness, and metastasis. How can immunotherapeutic-resistant tumor cells render multi-malignant phenotypes? We reasoned that the immune-refractory phenotype could be associated with multi-malignant phenotypes and that these phenotypes are linked together by a factor that acts as the master regulator. In this review, we discussed the role of the embryonic transcription factor NANOG as a crucial master regulator we named "common factor" in multi-malignant phenotypes and presented strategies to overcome multi-malignancy in immunotherapeutic-resistant cancer by restraining the NANOG-mediated multi-malignant signaling axis. Strategies that blunt the NANOG axis could improve the clinical management of therapy-refractory cancer.

Genetic Approach to Identify Critical Factors for Mouse Early Embryogenesis

  • Park, Joon-Hyun;Kim, Ji-Soo;Sonn, Sung-Keun;Rhee, Kun-Soo
    • Animal cells and systems
    • /
    • 제10권1호
    • /
    • pp.41-47
    • /
    • 2006
  • Development of the mammalian pre-implantation embryos has unique features, such as a slow and unsynchronized cell division, compaction, and eventual formation of blastocysts with inner cell mass and trophectoderm. In order to have a clue on molecular mechanisms that reside in mouse early development, we suppressed expression of early embryo-specific genes with RNAi and observed their development in vitro. We observed developmental defects in embryos microinjected with dsRNAs for Oct4 or Nanog among the tested genes. Careful examinations revealed that development of the most of the Oct4- or Nanog-suppressed embryos were arrested at the morula stage. These results suggest that the Oct4 and Nanog activities are also required for embryogenesis earlier than the blastocyst stage.

Adequate concentration of B cell leukemia/lymphoma 3 (Bcl3) is required for pluripotency and self-renewal of mouse embryonic stem cells via downregulation of Nanog transcription

  • Kang, Songhwa;Yun, Jisoo;Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Ha, Jongseong;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.92-97
    • /
    • 2018
  • B cell leukemia/lymphoma 3 (Bcl3) plays a pivotal role in immune homeostasis, cellular proliferation, and cell survival, as a co-activator or co-repressor of transcription of the $NF-{\kappa}B$ family. Recently, it was reported that Bcl3 positively regulates pluripotency genes, including Oct4, in mouse embryonic stem cells (mESCs). However, the role of Bcl3 in the maintenance of pluripotency and self-renewal activity is not fully established. Here, we report the dynamic regulation of the proliferation, pluripotency, and self-renewal of mESCs by Bcl3 via an influence on Nanog transcriptional activity. Bcl3 expression is predominantly observed in immature mESCs, but significantly decreased during cell differentiation by LIF depletion and in mESC-derived EBs. Importantly, the knockdown of Bcl3 resulted in the loss of self-renewal ability and decreased cell proliferation. Similarly, the ectopic expression of Bcl3 also resulted in a significant reduction of proliferation, and the self-renewal of mESCs was demonstrated by alkaline phosphatase staining and clonogenic single cell-derived colony assay. We further examined that Bcl3-mediated regulation of Nanog transcriptional activity in mESCs, which indicated that Bcl3 acts as a transcriptional repressor of Nanog expression in mESCs. In conclusion, we demonstrated that a sufficient concentration of Bcl3 in mESCs plays a critical role in the maintenance of pluripotency and the self-renewal of mESCs via the regulation of Nanog transcriptional activity.