• Title/Summary/Keyword: Nano-surface Treatment

Search Result 401, Processing Time 0.026 seconds

The Effect of Polyethylene Glycol on the Trivalent Chromium Electroplating (Polyethylene glycol이 3가크롬 전기도금에 미치는 효과)

  • Lee, Joo-Yul;Phuong, Nguyen Van;Lim, Sung-Hwan;Han, Seung-Zeon;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • The effect of organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was analysed in the view point of current efficiency, solution stability and metallurgical structure. It was measured that PEG-containing trivalent chromium solution had about 10% higher current efficiency than pure solution and controlled the micro-crack density of electrodeposits. PEG exhibited profound effect on the solution stability by reducing the consumption rate of formic acid which acts as a complexant to lower the activation energy required for electrochemical reduction of trivalent chromium ions. It was also revealed that the formation of chromium carbide layer was facilitated in the presence of polyethylene glycol, which meant easier electrochemical codeposition of chromium and carbon, not single chromium deposition. Trivalent chromium layer formed from PEG-containing solution was amorphous with local nano-crystalline particles, which were prominently developed on the entire surface after non-oxidative heat treatment.

Fabrication of nano-pattern of moth-eye structure by ion beam surface treatment (이온빔 표면처리를 통한 나방눈 구조의 나노패턴 형성 연구)

  • Byeon, Eun-Yeon;Lee, Seung-Hun;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.89-89
    • /
    • 2018
  • 스마트 폰이나 내비게이션, 태블릿 PC, TV 등 디스플레이 소자가 휴대 가능해지고 고급화되면서 빛 반사로 인한 눈부심, 시인성 저하 등에 대한 문제가 제기되고 있다. 디스플레이의 반사방지를 위해 방현성(anti-glare) 및 반사방지(anti-reflection) 특성의 코팅이나 기능성 필름에 대한 연구 개발이 이루어지고 있다. 특히 반사방지 기능 부여를 위해 나방눈(moth-eye) 구조를 모방하여 표면 나노 구조 형상화에 대한 연구가 활발히 진행되고 있지만, 나노 임프린팅 및 리소그라피 공정을 통한 패턴 공정은 마스크나 몰드를 필요하고 대면적 제작에 어려움이 있다. 본 연구에서는 폭 300 mm급 롤투롤 이온빔 표면처리를 통해 나노 구조 몰드 필름을 제작하였고, 이형용 수지를 이용한 표면 구조 전사를 통해 모스 아이 구조와 같은 나노 구조 패턴이 전사되는 것을 확인하였다. 나노 구조가 전사된 필름에 대한 투과도 관찰 결과, 전체 투과도 91% 이상으로 투과도가 약 3% 향상되고 반사도는 저하되는 결과를 확인하였다. 롤투롤 장비를 이용하여 대면적 필름 제작이 가능한 것을 확인하였고, 나노패턴의 구조 형성 및 반사방지 기능에 대한 신뢰성 검토를 통해서 양산화 가능할 것이라 전망된다.

  • PDF

Formation Rate of DNA Nanowires According to the APTES Concentration

  • Kim, Taek-Woon;Kim, Nam-Hoon;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.143-143
    • /
    • 2008
  • Nanowires are promising options for building nanoscale electronic structures coming from high conductivity of nanowires. In particular, Deoxyribonucleic acid (DNA), which is structurally nanowire, can obtain highly ordered electronic components for nanocircuitry and/or nanodevices because of its very flexible length controllability, nanometer-size diameter, about 2 nm, and self-assembling properties. In this work, we used the method to form DNA-Nanowires (NWs) by using chemical treatment on Silicon (Si) surface, and Aminopropyl-triethoxysilane (APTES) was used as inducer of DNA sequence to modify the characteristics of Si surface. Moreover, we performed tilting technique to align DNA by the direction of flow of DNA solution. We investigated the assembly process between DNA molecules and APTES - coated Si surface according to the APTES concentration, from $1.2{\mu}\ell$ to $120{\mu}\ell$. Atomic Force Microscopy (AFM) images showed the combination rate of DNA molecules by the change of APTES concentration. As APTES concentration becomes thicker, aggregation of DNA molecules occurs, and this makes a kind of DNA networks. In this respect, we confirmed that there's a positive relationship between the concentration of APTES and the formation rate of DNA nanowires. Since there have been lots of research preceded to utilize DNA nanowires as template, so by using this positive relationship with proper alignment technique, realization of nano electronic devices with DNA nanowires might be feasible.

  • PDF

Printing of Nano-silver Inks with Ink-jet Technology and Surface Treatment (잉크젯 기술자 표면처리 기술을 이용한 나노 실버 잉크 프린팅)

  • Shin, Kwon-Yong;Lee, Sang-Ho;Kim, Myong-Ki;Kang, Heui-Seok;Hwang, Jun-Young;Park, Moon-Soo;Kang, Kyung-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.104-105
    • /
    • 2007
  • In this study, characteristics of silver ink-jet printing were investigated under various substrate treatments such as substrate heating, hydrophobic coating, and ultraviolet(UV)/ozone soaking. Fluorocarbon(FC) film was spin-coated on the polyimide (PI) film substrate to obtain a hydrophobic surface. Although hydrophobicity of the FC film could reduce the diameter of the printed droplets, the singlet images printed on the FC film surface showed irregularities in the pattern size and the position of the printed droplet along with droplet merging phenomenon. The proposed UV/ozone soaking of the FC film improved the uniformity of the pattern size and the droplet position after printing and substrate heating was very effective way in preventing droplet merging. By heating of the substrate after UV/ozone soaking of the coated FC film, silver conductive lines of 78-116 ${\mu}m$ line were successfully printed at low substrate temperatures of $40^{\circ}C$.

  • PDF

Corrosion behaviors of plasma electrolytic oxidation (PEO) treated high-silicon aluminum alloys

  • Park, Deok-Yong;Chang, Chong-Hyun;Oh, Yong-Jun;Myung, Nosang V.;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.3
    • /
    • pp.143-155
    • /
    • 2022
  • Ceramic oxide layers successfully were formed on the surface of cast Al alloys with high Si contents using plasma electrolytic oxidation (PEO) process in electrolytes containing Na2SiO3, NaOH, and additives. The microstructure of the oxide layers was systematically analyzed using scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (TEM), X-ray diffraction patterns (XRD), and energy X-ray dispersive spectroscopy (EDS). XRD analysis indicated that the PEO untreated high-silicon Al alloys (i.e., 17.1 and 11.7 wt.% Si) consist of Al, Si and Al2Cu phases whereas Al2Cu phase selectively disappeared after PEO treatment. PEO process yielded an amorphous oxide layer with few second phases including γ-Al2O3 and Fe-rich phases. The corrosion behaviors of high-silicon Al alloys treated by PEO process were investigated using electrochemical impedance spectroscopy (EIS) and other electrochemical techniques (i.e., open circuit potential and polarization curve). Electroanalytical studies indicated that high-silicon Al alloys treated by PEO process have greater corrosion resistance than high-silicon alloys untreated by PEO process.

Formation of $ZrO_2$ nanodots for the enhanced flux pinning properties in high $T_c$ superconducting films (초전도 자속고정 특성 향상을 위한 $ZrO_2$ 나노점의 형성 연구)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Kim, Young-Kuk;Lee, Hye-Moon;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.15-18
    • /
    • 2008
  • To achieve high transport current without degradation under magnetic field, it is essential to artificially generate the pinning sites at which moving magnetic flux can be pinned. In this work, $ZrO_2$ nanodots were formed on the substrate surface using electro-spray deposition method. On top of the nanodots, the extended and effective pinning centers can be created. The positively charged Zr precursor solution was sprayed out from the needle using the corona discharge phenomena. Then, the sprayed precursor was deposited onto the negatively charged substrate surface followed by the heat treatment under the controlled atmosphere. Using the electrostatic force among the charged particles of precursor, evenly distributed and nano-sized dots were formed on the substrate surface. The size and density of the nanodots were studied by Atomic Force Microscopy. Also discussed are the effect of the deposition time and solution concentration on the size and density of the nanodot and processing variables in electro-spray method for the effective flux pinning centers in the superconducting films.

Effects of post anneal for the INZO films prepared by ultrasonic spray pyrolysis

  • Lan, Wen-How;Li, Yue-Lin;Chung, Yu-Chieh;Yu, Cheng-Chang;Chou, Yi-Chun;Wu, Yi-Da;Huang, Kai-Feng;Chen, Lung-Chien
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Indium-nitrogen co-doped zinc oxide thin films (INZO) were prepared on glass substrates in the atmosphere by ultrasonic spray pyrolysis. The aqueous solution of zinc acetate, ammonium acetate and different indium sources: indium (III) chloride and indium (III) nitrate were used as the precursors. After film deposition, different anneal temperature treatment as 350, 450, $550^{\circ}C$ were applied. Electrical properties as concentration and mobility were characterized by Hall measurement. The surface morphology and crystalline quality were characterized by SEM and XRD. With the activation energy analysis for both films, the concentration variation of the films at different heat treatment temperature was realized. Donors correspond to zinc related states dominate the conduction mechanism for these INZO films after $550^{\circ}C$ high temperature heat treatment process.

A Study on the Utilization of Effluent Treated by Double Process Using Fixed-media and Sand Filter Coated by Nano Silver for Wastewater Reclamation and Reusing System (고정상 담체와 은나노 모래여과를 이용한 이중 공정에서 처리수의 중수도 활용에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.317-323
    • /
    • 2006
  • This study focused on the availability of wastewater reclamation and reusing system as one of the alternatives against the global water shortage in near future, which system is composed of two treatment steps; first, wastewater is injected into upflow $A^2O$ biofilm process(anaerobic/anoxic/oxic) reactor filled with polyethylene fixed-media, and the effluent of 1st steps continuously passed through downflow nano silver sand filter. The pH of the effluent ranged from 7.39 to 8.06(average 7.84), the $COD_{Mn}$ was $8{\sim}18mg/L$(average 12.1 mg/L), and $BOD_5$ was $2.1{\sim}10.0mg/L$(average 4.9 mg/L), that met all the wastewater reclamation and reusing system criteria. Besides, the SS concentrations of the effluent which was $3{\sim}9mg/L$(average 4.95 mg/L) met the criteria(5 mg/L), showing 94.8% of average removal efficiency. The 99.1% of the average removal efficiency of the E-coliform did not met the criteria(Not detected), which indicates the needs for the following chlorine disinfection treatment with the residual chlorine concentration of above 0.2 mg/L. There are no bacteria on the sand surface coated by nano silver. The removal efficiency of T-N and T-P that could be included into the criteria in the future was 50.3% and 27.2% respectively.

Studies on Membrane Fouling Monitoring by Fluorescence Nano Particle and Fluorescent Spectrometry (형광 나노 입자 및 형광 분광 분석을 이용한 막오염 측정법 연구)

  • Seo, Mi-Rae;Nam, Mi-Yeon;Kim, Beom-Sik;Nam, Seung-Eun;Kim, In-Chul;Park, You-In
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Membrane fouling control in water treatment may be the main obstacle for wider implementation and lower cost. A novel fluorescent spectroscope sensor device for membrane fouling integrity monitoring has been developed and evaluated in this study. PSf membranes for water treatment has been fabricated with three types of organic fluorescent materials, OB, FP, KCB. The fluorescent signal from membrane surface was analyzed throughout the filtration process. It was found that the fluorescent signal due to the membrane fouling decreased and the developed device is reliable for membrane fouling monitoring.

Effect of Microstructure on the Environmentally Induced Cracking Behavior of Al-Zn-Mg-Cu-Zr Aluminum Alloy

  • Ghosh, Rahul;Venugopal, A.;Pradeep, PI;krishna, L. Rama;Narayanan, P. Ramesh;Pant, Bhanu;Cherian, Roy M
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.101-108
    • /
    • 2018
  • AA7010 is an Al-Zn-Mg-Cu alloy containing Zr, developed as an alternate to traditional AA7075 alloy owing to their high strength combined with better fracture toughness. It is necessary to improve the corrosion resistance and surface properties of the alloy by incorporating plasma electrolytic oxidation (PEO) method. AA7010-T7452 aluminum alloy has been processed through the forging route with multi-stage working operations, and was coated with $10{\mu}m$ thick $Al_2O_3$ ceramic aluminina coating using the plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviours were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. The results indicated that the additional thermomechanical treatment during the forging process caused a fully recrystallized microstructure, which lead to the poor environmental cracking resistance of the alloy in 3.5% NaCl solution, despite the overaging treatment. Although the fabricated PEO coating improved general corrosion resistance, the brittle nature of the coating did not provide any improvement in SCC resistance of the alloy. However, the hardness and elastic modulus of the coating were significantly higher than the base alloy.