• 제목/요약/키워드: Nano-surface

검색결과 3,077건 처리시간 0.031초

초소수성 표면 개질에 미치는 마이크로 나노 복합구조의 영향 (The Effect of Micro Nano Multi-Scale Structures on the Surface Wettability)

  • 이상민;정임덕;고종수
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.424-429
    • /
    • 2008
  • Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: squarepillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by deep reactive ion etching (DRIE) and reactive ion etching (RIE) processes, respectively. And plasma polymerized fluorocarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nanoprotrusions was $6.37^{\circ}$ higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle.

FTS 를 이용한 표면처리 방법에 따른 공정특성 연구 (A study on Process Characteristics Using Fast Tool Servo based Surface Texturing)

  • 이승준;이득우;김종만;이상민;김미루;장남수
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1127-1132
    • /
    • 2014
  • Fast tool servo (FTS) is an enabling technology to fabricate various shapes of functional surface geometries in a precise and controllable manner. FTS can be also employed as a straightforward and efficient surface treatment way of making such products more durable. In this work, process characteristics using high-precision FTS-based surface texturing were qualitatively and quantitatively investigated to provide a class of surface design rule. The morphologies of surfaces processed with different conditions were first examined by observing the resultant 2D/3D surface profiles. In addition, the effects of the surface treatment using FTS on hardness and wear properties were characterized and compared to those without treatment.

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

나노클레이 첨가량에 따른 나노재료 시멘트 모르타르에 정착된 보강섬유의 인발성능 (Pullout Performance of Reinforcing Fiber Embedded in Nano Materials Cement Mortar with Nano Clay Contents)

  • 오리온;박찬기
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.113-121
    • /
    • 2013
  • Recently, it has been studied for the application of nano-materials in the concrete. Applied a small amount of nano-materials can achieve the goal of high strength, high performance and high durability. The small addition of nano clay improves strength, thermal stability, and durability of concrete because of the excellent dispersion. The present study has investigated the effectiveness, when varying with the contents of nano clay, influencing the pull-out behavior of macro synthetic fibers in nano materials cement mortar. Pullout tests conducted in accordance with the Japan Concrete Institute (JCI) SF-8 standard for fiber-reinforced concrete test methods were used to evaluate the pullout performance of the different nano clay. Nano clay was added to the 0, 1, 2, 3, 4 and 5 % of cement weight. The experimental results demonstrated that the addition of nano clay led to improve the pull-out properties as of the load-displacement curve in the precracked and debonded zone. Also, the compressive strength, flexural strength and pullout performance and of Mix No. 1 and No. 2 increased up to the point when nano clay used increased by 2 and 3 % contents, respectively, but decreased when the exceeded 3 and 4 %, respectively. It was proved by verifying increase of the scratching phenomenon in macro synthetic fiber surface through the microstructure analysis on the surface of macro synthetic fiber.

Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Hosung
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.12-16
    • /
    • 2002
  • Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금 나노 입자 특성 분석 (Characterization of gold nanoparticles on optical fiber for localized surface plasmon resonance sensor)

  • 이훈;이승기
    • 센서학회지
    • /
    • 제18권3호
    • /
    • pp.226-233
    • /
    • 2009
  • In this study, the optical properties of localized surface plasmon resonance sensor using optical fiber was analyzed as the variation of a size and surface density of gold nano particles on the etched optical fiber surface. It is shown that a size and surface density of gold nano particles on optical fiber surface are controlled by $Na_3$ citrate quantity and pH of gold colloid solution. To measure the sensitivity, peak wavelength of absorbance spectrum was detected as the reflective index of the solution. The sensor sensitivity is linearly dependent on the size and surface densities of gold nano particles from the results of optical experiments.

질화물반도체 박막 성장용 나노 다공성 사파이어 기판 제작공정

  • 백하봉;최재호;김근주
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2007년도 춘계학술대회
    • /
    • pp.234-237
    • /
    • 2007
  • We fabricated nano-structures of the anodic aluminum oxides on sapphire substrates. Two processes of nano-structured sapphire surface have present: the one is the template mask and the other is the anodic oxidized aluminum deposited on sapphire substrate. The formation of nano-structures has investigated by FE-SEM measurement. The etched surface by the template showed periodic lattice but the deposited surface showed the randomly distributed phase of nanoholes instead of the periodic lattice.

  • PDF

The Electrochemical Characteristics of Anodized Ti-29Nb-xZr Alloys

  • Lee, Kang;Choe, Han-Choel;Ko, Yeong-Mu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.219-219
    • /
    • 2009
  • In this study, electrochemical impedance characteristics of anodic oxide layer formed on titanium ternary alloy surface have been investigated, Titanium oxide layers were grown on Ti-29Nb-xZr(x=3, 5, 7, 10 and 15 wt%) alloy substrates using phosphoric acid electrolytes.

  • PDF

Rapid Surface Modification via Mussel-Inspired Polymer Coating

  • 홍상현;강성민;이해신
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.88-88
    • /
    • 2012
  • 도파민은 홍합 모방물질로 표면개질 가능한 표면의 다양성과 편리한 개질 방법으로 인해 여러 분야에서 각광받고 있다. 본 연구에서는 이러한 도파민 표면개질 방법을 최적화 시켜 수분 안에 기존의 특성에 변화를 주지 않고 표면개질이 가능 하도록 개선시켰다.

  • PDF

Nitrogen Depth Profiles in Ultrathin Oxynitride Films

  • Shon, H.K.;Kang, H.J.;Chang, H.S.;Kim, H.K.;Moon, D.W.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권1호
    • /
    • pp.5-7
    • /
    • 2002
  • For quantitative N depth profiling, N profiles were measured in a~3 m Si oxynitride by low energy O$\sub$2+/sputtering and the result was calibrated with MEIS analysis of the N thickness and areal density. The quantitative depth profile of nitrogen showed the pileup of nitrogen atoms at the interface of ultrathin oxynitride films.

  • PDF