• Title/Summary/Keyword: Nano-surface

Search Result 3,094, Processing Time 0.034 seconds

Nano-size Study of Surface-modified Ag Anode for OLEDs (표면처리에 의한 유기발광소자(OLED)용 Ag 전극의 Nano-size 효과 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kim, Hyeong-Keun;Jun, Jae-Hyeok;Jeong, Yun-Jong;Kim, Mu-Chan;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Although silver is used for T-OLED (Top emitting organic Light-Emitting Diode) as reflective anode, it is not an ideal material due to its low work function. Thus, we study the effect of annealing and atmospheric pressure plasma treatment on Ag film that increases its work function by forming the thin silver oxide layer on its surface. In this study, we deposited silver on glass substrate using RF sputtering. Then we treated the Ag samples annealing at $300^{\circ}C$ for 30 minutes in atmosphere or treating the atmospheric plasma treatment for 30, 60, 90, 120s, respectively. We measured the change of the mechanical properties and the potential value of surface with each one at a different treatment type and time. We used nano-indenter system and KPFM (Kelvin Probe Force Microscopy). KPFM method can be measured the change of surface potential. The nanoindenter results showed that the plasma treatment samples for 30s, 120s had very low elastic modulus, hardness and Weibull modulus. However, annealed sample and plasma treated samples for 60s and 90s had better mechanical properties. Therefore, plasma treatment increases the uniformity thin film and the surface potential that is very effective for the performace of T-OLED.

A Study on the Oxidation Behaviors of Power Plant Valve Materials under the Ultra Super Critical Condition (초초 임계 화력 발전소용 밸브 소재의 산화 거동)

  • Lee, J.S.;Cho, T.Y.;Yoon, J.H.;Joo, Y.G.;Song, K.O.;Cho, J.Y.;Kang, J.H.;Lee, S.H.;Uhm, K.W.;Lee, J.W.
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • Recently ultra-supercritical steam power plants operate at $1000^{\circ}F$ ($538^{\circ}C$) and 3500 psi (24.1 MPa). Thermal efficiency of power plant will be increased about 2% if steam temperature increases from $1000^{\circ}F$ to $1150^{\circ}F$ ($621^{\circ}C$). In this study valve materials Incoloy901 (IC901) and Inconel718 (IN718) were nitrided to improve the surface hardness and solid lubrication function of the valve materials. The hardness of both IC901 and IN718 increased about two times by ion nitriding. IC901, IN718 and their nitrided specimens were corroded under ultra super-critical condition (USC) of $621^{\circ}C$. and 3600 psi (24.8 MPa) for 2000 hours. Oxidations of both IC901 and IN718 were very small due to the formation of protective oxide layer on the surface. But the corrosion resistance of both nitrided specimens decreased because of the formation of non-protective nitride layer of $Fe_{4}N$, $Fe_{2}N$ and CrN on the surface layer. The hardness of both nitrided IC901 and IN718 at $20{\mu}m$ depth from the surface decreased about 30% and 20% respectively by USC 2000 hours.

Experimental Investigation of CHF Enhancement on the Modified Surface Under Pool Boiling (개질된 표면을 이용한 풀비등 임계열유속 증진에 관련한 실험적 연구)

  • Kang, Soon-Ho;Ahn, Ho-Seon;Jo, Hang-Jin;Kim, Moo-Hwan;Kim, Hyung-Mo;Kim, Joon-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.840-848
    • /
    • 2009
  • In the boiling heat transfer mechanism, CHF(critical heat flux) is the significantly important parameter of the system. So, many researchers have been struggling to enhance the CHF of the system in enormous methods. Recently, there were lots of researches about enormous CHF enhancement with the nanofluids. In that, the pool boiling CHF in nanofluids has the significantly increased value compared to that in pure water because of the deposition of the nanoparticle on the heater surface in the nanofluids. The aim of this study is the comparison of the effect of the nanoparticle deposited surface and the modified surface which has the similar morphology and made by MEMS fabrication. The nanoparticle deposited surface has the complex structures in nano-micro scale. Therefore, we fabricated the surfaces which has the similar wettability and coated with the micro size post and nano structure. The experiment is performed in 3 cases : the bare surface with 0.002% water-ZnO nanofluids, the nanoparticle deposited surface with pure water and the new fabricated surface with pure water. The contact angle, a representative parameter of the wettability, of the all 3 cases has the similar value about 0 and the SEM(scanning electron microscope) images of the surfaces show the complex nano-micro structure. From the pool boiling experiment of the each case, the nanoparticle deposited surface with pure water and the fabricated surface with pure water has the almost same CHF value. In other words, the CHF enhancement of the nanoparticle deposited surface is the surface effect. It also shows that the new fabricated surface follows the nanoparticle deposited surface well.

A Reliability Test for ph-free SnCu Plating Solution and It's Deposit (Sn-Cu 무연 도금용액 및 피막의 신뢰성평가)

  • Lee Hong-Kee;Hur Jin-Young
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.6
    • /
    • pp.216-226
    • /
    • 2005
  • Pb-Free Technology was born with environmental problems of electronic component, Being connected by big and small project of every country. Also, in each country environment is connected and various standards of IEC, ISO, MIL, JIS, KS, JEDEC, EIAJ etc. All products can divide at solder part and finishing part These can tested each and synthetically divide. This research is reliability evaluation for three kind of ph-free SnCu solder plating solution and it's deposit. First, executed analysis about Pure Sn, SnCu solutions and plating surface by way similar to other plating solution analysis. Next, executed reliability about test method and equipment for reliable analyzer system construction. Next, data comparison and estimation, main estimation test method and item's choice. In this paper the systematic surface analysis and reliability for plating solutions and it's deposit in metal surface finishing processes could be shown.

Oxidation Behavior of Nuclear Graphite(IG110) with Surface Roughness (표면조도에 따른 원자로급 흑연(IG110)의 산화거동)

  • Cho, Kwang-Youn;Kim, Kyong-Ja;Lim, Yun-Soo;Chi, Se-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.613-618
    • /
    • 2006
  • Graphite is suitable materials as a moderator, reflector, and supporter of a nuclear reactor because of high tolerance to the high temperature and neutron irradiations. Because graphite is so weak to the oxidation, its oxidation study is essentially demanded for the operation and design of the nuclear reactor. This work focuses on the effect of the surface oxidation of graphite according to the surface treatment. With thermogravimeter (TG), oxidation characteristics of the isotropic graphite are measured at the three temperature areas, and oxidation ratio and amounts are estimated as changing the surface roughness. Furthermore, the polished graphite surface produced fom the surface treatment is investigated with the Raman spectroscopic study. Oxidation behaviors of the surface are also evaluated as elimination the polished layer by washing with strong sonication.

The Electrical Properties of GaN Individual Nanorod Devices by Wet-etching of the Nanorod Surface and Annealing Treatment (표면 습식 식각 및 열처리에 따른 GaN 단일 나노로드 소자의 전기적 특성변화)

  • Ji, Hyun-Jin;Choi, Jae-Wan;Kim, Gyu-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.152-155
    • /
    • 2011
  • Even though nano-scale materials were very advantageous for various applications, there are still problems to be solved such as the stabilization of surface state and realization of low contact resistances between a semiconducting nanowire and electrodes in nano-electronics. It is well known that the effects of contacts barrier between nano-channel and metal electrodes were dominant in carrier transportation in individual nano-electronics. In this report, it was investigated the electrical properties of GaN nanorod devices after chemical etching and rapid thermal annealing for making good contacts. After KOH wet-etching of the contact area the devices showed better electrical performance compared with non-treated GaN individual devices but still didn't have linear voltage-current characteristics. The shape of voltage-current properties of GaN devices were improved remarkably after rapid thermal annealing as showing Ohmic behaviors with further bigger conductivities. Even though chemical etching of the nanorod surfaces could cause scattering of carriers, in here it was shown that the most important and dominant factor in carrier transport of nano-electronics was realization of low contact barrier between nano-channel and metal electrodes surely.

The diffusion model on the electrodes with nano-porous surfaces (나노 다공성 표면 전극 위의 확산 모델)

  • Park, Jin-Hyoung;Park, Sae-Jin;Chung, Taek-Dong;Kim, Hee-Chan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1100-1103
    • /
    • 2003
  • One of the good ways to raise the rate of the electrochemical reaction is to broaden the effective surface area of the electrode by developing cylindrical nano-pores on the surfaces. The numerous pores of several nanometer in diameter can be used to enhance a specific faradaic reaction so that the nano-porous structure attract keen attention in terms of implication of new bio/chemical sensors, in which no chemical modification is involved. Amperometric glucose sensor is a representative example that needs the selective enhancement of glucose oxidation over the current due to physiological interferents such as ascorbic acid. The present paper reports how the ascorbic acid and glucose diffuse around the nano-porous surface by simulation study, for which 2D-FDM (Finite Difference Method) was adopted. The results of the simulation not only consist with those from electrochemical experiments but also reveal valuable potential for more advanced application of the nano-porous electrode.

  • PDF