• Title/Summary/Keyword: Nano-sized thin film

Search Result 66, Processing Time 0.032 seconds

Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials (직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구)

  • Kim, Hyun-Cheol;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.513-517
    • /
    • 2010
  • There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.

Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique (마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상)

  • Kim D.I.;Huh Y.H.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1442-1445
    • /
    • 2005
  • Several test methods, including micro strain/deformation measurement techniques, have been studied to more reliably measure the micro properties in micro/nano materials. Therefore, in this study, the continuous measurement of in-plane tensile strain in micro-sized specimens of thin film materials was introduced using the micro-ESPI technique. TiN and Au thin films 1 and $0.47\;\mu{m}$ thick, respectively, were deposited on the silicon wafer and fabricated into the micro-sized tensile specimens using the electromachining process. The micro-tensile loading system and micro-ESPI system were developed to measure the tensile strain during micro-tensile test. The micro-tensile stress-strain for these materials was determined using the algorithm for continuous strain measurement. Furthermore, algorithm for enhancing the sensitivity to measurement of in-plane tensile strain was suggested. According to the algorithm for enhancement of sensitivity, micro-tensile strain data between interfringe were calculated. It is shown that the algorithm for enhancement of the sensitivity suggested in this study makes the sensitivity to the in-plane tensile strain increase.

  • PDF

J-aggregation Property of Merocyanine Dye LB Thin Film by UV Irradiation (UV 조사에 의한 메로시아닌 색소 LB박막의 J-aggregation 특성)

  • Yang, Chang-Heon;Lee, Ji-Yoon;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.123-124
    • /
    • 2008
  • We investigate characteristics of J-aggregation as take advantage of LB technic. In order to confirm the applications possible for the molecular electronic device, the morphological properties of merocyanine dye were investigated by AFM. $\pi$-A curves investigated the surface pressure of the LB film from a liquid to a solid state ranged between 90 and 100 mN/m. We observed aggregation and it's characteristics by using visible reflection spectroscopy. This paper focuses on results obtained in mercocyanide dye. When LB films of merocyanine dye are mixed with arachidic acid, J-aggregate formation is exhibited. J-aggregate formation has been serving as typical systems in revealing the physical and structural aspects of nano-sized molecular aggregates constructed as muiltilayers.

  • PDF

Influence of Cu Composition on the Mechanical Properties and Microstructure of Ti-Al-Si-Cu-N thick films (Ti-Al-Si-Cu-N 후막의 Cu 조성에 따른 기계적 특성과 미세구조 변화에 관한 연구)

  • Yeon-Hak Lee;Sung-Bo Heo;In-Wook Park;Daeil Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.5
    • /
    • pp.335-340
    • /
    • 2023
  • Quinary component of 3㎛ thick Ti-Al-Si-Cu-N films were deposited onto WC-Co and Si wafer substrates by using an arc ion plating(AIP) system. In this study, the influence of copper(Cu) contents on the mechanical properties and microstructure of the films were investigated. The hardness of the films with 3.1 at.% Cu addition exhibited the hardness value of above 42 GPa due to the microstructural change as well as the solid-solution hardening. The instrumental analyses revealed that the deposited film with Cu content of 3.1 at.% was a nano-composites with nano-sized crystallites (5-7 nm in dia.) and a thin layer of amorphous Si3N4 phase.

Crystal growth and optical properties with preheating temperature of sol-gel derived ZnO thin films

  • Kim, Young-Sung;Lee, Choong-Sun;Kim, Ik-Joo;Ko, Hyung-Duk;Tai, Weon-Pil;Song, Yong-Jin;Suh, Su-Jeung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.187-192
    • /
    • 2004
  • We try to use isopropanol which has low boiling point to prepare ZnO thin films at low temperature. ZnO thin films were prepared by sol-gel spin-coating method using zinc acetate dehydrate-isopropanol-monoethanolamine (MEA) solution. The c-axis preferred orientation and optical properties of ZnO films with preheating temperature have been investigated. ZnO thin films were preheated at 200 to $300^{\circ}C$ with an interval of $25^{\circ}C$ and post-heated at $650^{\circ}C$. The ZnO film preheated at $275^{\circ}C$ and post-heated at $650^{\circ}C$ was highly oriented along c-axis (002) plane, and the surface with homogeneous and dense microstructures was formed having nano-sized grains. The optical transmittance was above 90 % in the visible range and exhibited absorption edges at 368 nm wavelength.

Effect of $Y_2O_3$ Nanoparticles on Critical Current Density of $YBa_2Cu_3O_{7-x}$ Thin Films ($Y_2O_3$ 나노입자가 $YBa_2Cu_3O_{7-x}$ 박막의 임계전류밀도에 미치는 영향)

  • Tran, H.D.;Reddy, D.Sreekantha;Wie, C.H.;Kang, B.;Oh, Sang-Jun;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • Introduction of proper impurity into $YBa_2Cu_3O_{7-x}$ (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of $Y_2O_3$ nanoparticles on the critical current density $J_c$ of the YBCO thin films. The $Y_2O_3$ nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/$Y_2O_3$/LAO or $Y_2O_3$/YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied ($780^{\circ}C$ and $800^{\circ}C$) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of $780^{\circ}C$ created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. $J_c$ values of the YBCO films with $Y_2O_3$ particles were either remained nearly the same or decreased for the samples in which YBCO is grown at $780^{\circ}C$. On the other hand, $J_c$ values were enhanced for the samples in which YBCO is grown at higher temperature of $800^{\circ}C$. The difference in the effect of $Y_2O_3$ can be explained by the fact that the higher deposition temperature of $800^{\circ}C$ reduces intrinsic pinning centers and $J_c$ is enhanced by introduction of artificial pinning centers in the form of $Y_2O_3$ nanoparticles.

  • PDF

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

Preparation of ZnO Thin Film by Electrophoretic Deposition(EPD)

  • Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The electrophoretic deposition(EPD) of ZnO nano-sized colloids is investigated by changing the colloid number concentration, applied force, and deposition time. The change of the colloid size in a suspension was examined by the different colloid number concentrations (N = $3.98{\times}10^{15}$, N = $3.98{\times}10^{14}$, and N = $3.98{\times}10^{13}$) with an increase of the deposition time and applied forces. Deposition behavior was investigated by changing the applied fields (from DC 5 V to 50 V) and the deposition time (5 min to 25 min). The surface microstructures of the as-deposited films were investigated by SEM. The dried films were sintered from $850^{\circ}C$ to $1,050^{\circ}C$ for 2 h and then the microstructures were also explored by SEM. The agglomeration rate was enhanced by increasing the colloid number concentration of colloids. Colloid number concentration in a suspension must be rapidly decreased at higher values of the electric field. ZnO nano-sized colloids had the highest zeta potential value of over -28 mV in methanol. A homogeneous microstructure was obtained at colloid number concentration of N = $3.98{\times}10^{13}$, applied DC field of 5 V/cm and 15 min of deposition time at an electrode distance of 1.5 cm. Under these conditions, the deposited films were sintered at $850^{\circ}C$ and $1,050^{\circ}C$ for 2 h. The results show a typical pore-free surface morphology of a uniform thickness of 400 nm under these experimental conditions.

The Structural and Electrical Properties of the BST Thin Film Prepared by Sol-Gel method. (Sol-Gel법으로 제조한 BST 박막의 구조 및 전기적 특성)

  • Kim, Kyoung-Duk;Chung, Jang-Ho;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.291-293
    • /
    • 1997
  • In this study, Sol-Gel derived $(Ba_{0.7}Sr_{0.3})TiO_3$ thin films were fabricated and investigated. The stock solution was synthesized and spin-coated on Pt/Ti/$SiO_2$/Si substrate at 4000(rpm] and then, annealed at $650{\sim}750[^{\circ}C]$. Crystallization condition, microstructural properties and interfacial structure were observed by XRD, AFM, SEM and TEM. It was found that the BST thin films were completely crystallized at 750[$^{\circ}C$] and showed nano-sized grains. The dielectric constant and loss of the BST thin films were 220, 0.01 at 1[kHz] respectively. Increasing the temperature, the dielectric constant and loss characteristics were not varied widely. At the applied voltage of 1.5[V], the leakage current density was under the $10^{-9}[A/cm^2]$.

  • PDF

Ferroelectric ultra high-density data storage based on scanning nonlinear dielectric microscopy

  • Cho, Ya-Suo;Odagawa, Nozomi;Tanaka, Kenkou;Hiranaga, Yoshiomi
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.94-112
    • /
    • 2007
  • Nano-sized inverted domain dots in ferroelectric materials have potential application in ultrahigh-density rewritable data storage systems. Herein, a data storage system is presented based on scanning non-linear dielectric microscopy and a thin film of ferroelectric single-crystal lithium tantalite. Through domain engineering, we succeeded to form an smallest artificial nano-domain single dot of 5.1 nm in diameter and artificial nano-domain dot-array with a memory density of 10.1 Tbit/$inch^2$ and a bit spacing of 8.0 nm, representing the highest memory density for rewritable data storage reported to date. Sub-nanosecond (500psec) domain switching speed also has been achieved. Next, long term retention characteristic of data with inverted domain dots is investigated by conducting heat treatment test. Obtained life time of inverted dot with the radius of 50nm was 16.9 years at $80^{\circ}C$. Finally, actual information storage with low bit error and high memory density was performed. A bit error ratio of less than $1\times10^{-4}$ was achieved at an areal density of 258 Gbit/inch2. Moreover, actual information storage is demonstrated at a density of 1 Tbit/$inch^2$.

  • PDF