• 제목/요약/키워드: Nano-sized cobalt powder

검색결과 14건 처리시간 0.026초

나노코발트 분말합성을 위한 액상환원공정의 최적화 (Optimization of Wet Reduction Processing for Nanosized Cobalt Powder)

  • 홍현선;정항철;김건홍;강이승;석한길
    • 한국분말재료학회지
    • /
    • 제20권3호
    • /
    • pp.191-196
    • /
    • 2013
  • Nano-sized cobalt powder was fabricated by wet chemical reduction method at room temperature. The effects of various experimental variables on the overall properties of fabricated nano-sized cobalt powders have been investigated in detail, and amount of NaOH and reducing agent and dropping speed of reducing agent have been properly selected as experimental variables in the present research. Minitab program which could find optimized conditions was adopted as a statistic analysis. 3D Scatter-Plot and DOE (Design of Experiments) conditions for synthesis of nano-sized cobalt powder were well developed using Box-Behnken DOE method. Based on the results of the DOE process, reproducibility test were performed for nano-sized cobalt powder. Spherical nano-sized cobalt powders with an average size of 70-100 nm were successfully developed and crystalline peaks for the HCP and FCC structure were observed without second phase such as $Co(OH)_2$.

Application of Spray Pyrolysis Process for the Preparation of Nano Sized Cobalt Oxide Powder

  • Kim, Dong Hee;Seo, Dong Jun;Yu, Jae Keun
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.25-32
    • /
    • 2014
  • In this study, nano-sized cobalt oxide powder with an average particle size below 50 nm was prepared from a cobalt chloride solution by the spray pyrolysis process. The influences of reaction temperature on the properties of the generated powder were examined. The average particle size of the particles formed based on the spray pyrolysis process at a reaction temperature of $700^{\circ}C$ is roughly 20 nm. Moreover, most of these particles cannot appear with an independent type, thereby coexisting in a droplet type. When the reaction temperature increases to $800^{\circ}C$, the average particle size not only increases to roughly 40 nm but also shows a more dense structure while the ratio of particles which shows a polygonal form significantly increases. As the reaction temperature increases to $900^{\circ}C$, the distribution of the particles is from roughly 70 nm to 100 nm, while most of the particle surface is more intricately close and forms a polygonal shape. When the reaction temperature increases to $1000^{\circ}C$, the particle size distribution of the powder shows an existing form from 80 nm to at least 150 nm in an uneven form. As the reaction temperature increases, the XRD peak intensity gradually increases, yet the specific surface area gradually decreases.

액상환원공정을 이용한 황산코발트로부터의 코발트 나노분말 합성 (Synthesis of Nano Sized Cobalt Powder from Cobalt Sulfate Heptahydrate by Liquid Phase Reduction)

  • 안세환;김세훈;이진호;홍현선;김영도
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.327-333
    • /
    • 2011
  • Nanostructured cobalt materials have recently attracted considerable attention due to their potential applications in high-density data storage, magnetic separation and heterogeneous catalysts. The size as well as the morphology at the nano scale strongly influences the physical and chemical properties of cobalt nano materials. In this study, cobalt nano particles synthesized by a a polyol process, which is a liquid-phase reduction method, were investigated. Cobalt hydroxide ($Co(OH)_2$), as an intermediate reaction product, was synthesized by the reaction between cobalt sulphate heptahydrate ($CoSO_4{\cdot}7H_2O$) used as a precursor and sodium hydroxide (NaOH) dissolved in DI water. As-synthesized $Co(OH)_2$ was washed and filtered several times with DI water, because intermediate reaction products had not only $Co(OH)_2$ but also sodium sulphate ($Na_2SO_4$), as an impurity. Then the cobalt powder was synthesized by diethylene glycol (DEG), as a reduction agent, with various temperatures and times. Polyvinylpyrrolidone (PVP), as a capping agent, was also added to control agglomeration and dispersion of the cobalt nano particles. The optimized synthesis condition was achieved at $220^{\circ}C$ for 4 hours with 0.6 of the PVP/$Co(OH)_2$ molar ratio. Consequently, it was confirmed that the synthesized nano sized cobalt particles had a face centered cubic (fcc) structure and with a size range of 100-200 nm.

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

Fabrication of Nano-sized WC/Co Composite Powder by Direct Reduction and Carburization with Carbon

  • Lee, Dong-Ryoul;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.642-643
    • /
    • 2006
  • Direct reduction and carburization process was thought one of the best methods to make nano-sized WC powder. The oxide powders were mixed with graphite powder by ball milling in the compositions of WC-5,-10wt%Co. The mixture was heated at the temperatures of $600{\sim}800^{\circ}C$ for 5 hours in Ar. The reaction time of the reduction and carburization was decreased as heating temperatures and cobalt content increased. The mean size of WC/Co composite powders was about 260 nm after the reactions. And the mean size of WC grains in WC/Co composite powders was about 38 nm after the reaction at $800^{\circ}C$ for 5 hours.

  • PDF

화학기상응축공정(Chemical Vapor Condensation)으로 제조된 Co 나노분말의 미세구조 및 자기적 성질에 미치는 운송기체의 영향 (Effect of Carrier Gas on the Microstructure and Magnetic Properties of Co Nanoparticles Synthesized by Chemical Vapor Condensation)

  • 최철진;;유지훈;김진천;김병기
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.16-21
    • /
    • 2004
  • The nano-sized Co particles were successfully synthesized by chemical vapor condensation (CVC) process using the precursor of cobalt carbonyl ($Co_2(CO)_8$). The influence of carrier gases on the microstructure and magnetic properties of nanoparticles was investigated by means of XRD, TEM, XPS and VSM. The Co nano-particles with different phases and shapes were synthesized with a change of carrier gas : long string morphologies with coexistence of fcc and hcp structure in Ar carrier gas condition; finer Co core in a mass of cobalt oxide with only fcc structure in He; rod type cobalt oxide phase in Ar+6vol%$O_2$. The saturation magnetization and coercivity was lower in Co nanoparticles synthesized in He carrier gas, due to their finer size.

Effect of the Concentration of Cobalt Chloride Solution for the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae Keun;Cha, Kwang Yong;Seo, Dong Jun;Han, Joung Su;Jang, Jae Bum;Lee, Yong Hwa;Kim, Dong Hee
    • 한국재료학회지
    • /
    • 제24권6호
    • /
    • pp.277-284
    • /
    • 2014
  • Using the spray pyrolysis process, nano-sized cobalt oxide powder with average particle size below 50 nm was prepared from cobalt chloride solution. The influences of the raw material solution on the properties of the powder formed examined. When the concentration of Co was low(20 g/L), the average particle size of the powder formed was roughly 20 nm, and the cohesion between these particles was significantly strong. When the concentration of Co increased to 100 g/L, the droplets nearly failed to exist in circular form and reflected a severely divided form. Furthermore, the average size of the particles formed was roughly 40 nm, and the particles reflected a polygonal form. When the solution was increased to nearly saturation level (Co at 200 g/L), the particle size distribution reflected significant unevenness due to severe droplet division while the surface also reflected significant unevenness. Furthermore, the average size of the particles formed increased significantly to 70 nm. The results of XRD analysis showed that the strength of the peaks reflected very little change when the concentration of Co was increased from 20 g/L to 50 g/L. Alternatively, when the concentration was increased to 100 g/L, the strength of the peaks increased compared to when the concentration was 50 g/L. However, when the concentration was increased to 200 g/L, the strength of the peaks failed to reflect significant change compared to when the concentration was 100 g/L. The specific surface area dramatically decreased by 30 % when the concentration of Co was increased from 20 g/L to 50 g/L. Alternatively, when the concentration of Co the solution increased to 100 g/L, the specific surface area decreased by roughly 15 %. Furthermore, when the concentration of Co was increased to nearly saturation level(200 g/L), the specific surface area decreased by roughly 35%.

텅스텐염의 액상법을 통한 초미립 WC-Co 분말의 합성 (Synthesis of Nano-sized Tungsten Carbide - Cobalt Powder by Liquid Phase Method of Tungstate)

  • 김종훈;박용호;하국현
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.332-339
    • /
    • 2011
  • Cemented tungsten carbide has been used in cutting tools and die materials, and is an important industrial material. When the particle size is reduced to ultrafine, the hardness and other mechanical properties are improved remarkably. Ultrafine cemented carbide with high toughness and hardness is now widely used. The objective of this study is synthesis of nanostructured WC-Co powders by liquid phase method of tungstate. The precursor powders were obtained by freezen-drying of aqueous solution of soluble salts, such as ammonium metatungstate, cobalt nitrate. the final compositions were WC-10Co. In the case of liquid phase method, it can be observed synthesis of WC-10Co. The properties of powder produced at various temperature, were estimated from the SEM, BET and C/S analyser.

분무열분해 공정에 의한 코발트 산화물 나노 분체 제조에 미치는 노즐 팁 크기의 영향 (Effect of Nozzle Tip Size on the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process)

  • 김동희;유재근
    • 자원리싸이클링
    • /
    • 제25권6호
    • /
    • pp.41-49
    • /
    • 2016
  • 본 연구에서는 코발트 염화물($CoCl_2$) 용액을 원료로 하여 분무열분해 반응에 의하여 평균입도 50 nm 이하의 코발트 산화물($Co_3O_4$) 분말을 제조하였으며 원료용액이 분사되는 노즐 팁의 크기 변화에 따른 입자들의 특성 변화를 파악하였다. 노즐 팁의 크기가 1 mm인 경우에는 형성된 대부분의 액적형태는 구형을 이루고 있으며 표면은 매우 치밀한 조직을 나타내고 있음을 알 수 있었다. 최종 형성된 입자들의 평균입도는 20 ~ 30 nm이었다. 노즐 팁의 크기가 2 mm인 경우에는 형성된 액적형태는 일부는 구형을 이루고 있었지만 상당 부분은 심하게 분열된 형태를 나타내고 있었다. 노즐 팁 크기가 5 mm인 경우에는 구형을 이루는 액적형태는 거의 존재하지 않았으며 거의 대부분 심하게 분열된 상태를 나타내고 있었다. 액적형태의 표면조직은 다른 노즐 팁 경우에 비하여 치밀함이 크게 감소하였다. 형성된 입자들의 평균입도는 약 25 nm이었다. 노즐 팁 크기가 1 mm로부터 2 mm 및 3 mm로 증가함에 따라 XRD 피크들의 강도는 거의 변화가 없는 반면 노즐 팁 크기가 5 mm로 증가되는 경우에는 피크의 강도가 현저히 감소하게 되었다. 노즐 팁 크기가 1 mm로부터 2 mm 로 증가함에 따라 입자들의 비표면적은 감소하였으며 5 mm로 증가되는 경우에는 비표면적이 현저히 증가하였다.