Browse > Article
http://dx.doi.org/10.4150/KPMI.2013.20.3.191

Optimization of Wet Reduction Processing for Nanosized Cobalt Powder  

Hong, Hyun-Seon (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
Jung, Hang-Chul (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
Kim, Geon-Hong (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
Kang, Lee-Seung (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
Suk, Han-Gil (Department of Materials and Metallurgical Engineering, Kangwon National University)
Publication Information
Journal of Powder Materials / v.20, no.3, 2013 , pp. 191-196 More about this Journal
Abstract
Nano-sized cobalt powder was fabricated by wet chemical reduction method at room temperature. The effects of various experimental variables on the overall properties of fabricated nano-sized cobalt powders have been investigated in detail, and amount of NaOH and reducing agent and dropping speed of reducing agent have been properly selected as experimental variables in the present research. Minitab program which could find optimized conditions was adopted as a statistic analysis. 3D Scatter-Plot and DOE (Design of Experiments) conditions for synthesis of nano-sized cobalt powder were well developed using Box-Behnken DOE method. Based on the results of the DOE process, reproducibility test were performed for nano-sized cobalt powder. Spherical nano-sized cobalt powders with an average size of 70-100 nm were successfully developed and crystalline peaks for the HCP and FCC structure were observed without second phase such as $Co(OH)_2$.
Keywords
Nano-sized cobalt powder; Wet chemical reduction; Design of experiments; Reproducibility;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. K. Akasawat: Proceedings of the 15th International Thermal Spray Conference, (1998) 281.
2 H. L. de Villiers Lovelock, P. W. Richter, J. M. Benson and P. M. Young: J. Thermal SprayTechnol., 7 (1998) 97.   DOI
3 H. M. Hawthorne, B. Arsenault, J. P. Immarigeon, J. G. Legoux and V. R. Parameswaran: Wear, 225 (1999) 825.
4 A. Karimi, Ch. Verdon, J. L. Martin and R. K. Schmid: Wear, 186 (1995) 480.
5 Cobalt facts, Cobalt Supply & Demand 2009, Cobalt Development Institute, (2010).
6 K. Mohan and P. R. Strutt: Nanostructured Mater., 7 (1996) 547.   DOI   ScienceOn
7 B. K. Kim, G. H. Ha, G. G. Lee and D. W. Lee: Nanostructured Mater., 9 (1997) 233.   DOI   ScienceOn
8 L. C. Sterns, J. H. Zhao and P. Harmer: J. Eur. Ceram. Soc., 10 (1992) 473.   DOI   ScienceOn
9 J. R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra and H. Van Swygenhoven: MRS Bulletin, 24 (1999) 44.
10 K. Jia and T. E. Fischer: Wear, 200 (1996) 206.   DOI   ScienceOn
11 H. S. Hong, S. Lee, G. H. Kim, T. S. Kim, H. Y. Kang and S. J. Hong: J. Kor. Powder Metall. Inst., 16 (2009) 379.
12 D. J. Kim, H. S. Chung and K. N. Yu: Mater. Res. Bull., 37 (2002) 2067.   DOI   ScienceOn
13 C. Johans, M. Pohjakallioa, M. Ijas, Y. Ge and K. Oritturi: Colloid Surf. A-Physicochem. Eng. Asp., 330 (2008) 14.   DOI   ScienceOn
14 A. M. Ibrahim, M. M. Abd El-Latif and M. M. Mahmoud: J. Alloys Compd., 506 (2010) 201.   DOI   ScienceOn
15 S. Gurmen, S. Stopic and B. Friedrich: Mater. Res. Bull., 41 (2006) 1882.   DOI   ScienceOn
16 L. Zhang, H. Z. Wang and J. G. Li: Mater. Chem. Phys., 116 (2009) 514.   DOI   ScienceOn
17 J. H. Huang, C. Kargl-Simard, M. Oliazadeh and A. M. Alfantazi: Hydrometallurgy, 75 (2004) 77.   DOI   ScienceOn
18 J. A. Jacquez: J. Franklin Inst., 335 (1998) 259.   DOI   ScienceOn
19 H. S. Hong, Y. D. Ko, L. S. Kang, G. H. Kim and H. C. Jung: J. Kor. Powd. Met. Inst., 18 (2011) 244 (Korean).   DOI   ScienceOn
20 Jianming Lu, D.B. Dreisinger and W.C. Cooper: Hydrometallurgy, 45 (1997) 305.   DOI   ScienceOn