• Title/Summary/Keyword: Nano-silver

Search Result 321, Processing Time 0.023 seconds

Pretreatment Effect on CO Oxidation over Highly Ordered Mesoporous Silver Catalyst

  • Shon, Jeong-Kuk;Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Moon, Ki-Young;Boo, Jin-Hyo;Han, Tae-Hee;Kim, Ji-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.415-418
    • /
    • 2010
  • Highly ordered mesoporous silver material was successfully synthesized from a mesoporous silica template (KIT-6) with 3-D channel structure using the nano-replication method. The effects of $H_2$ or $O_2$ pretreatments on the catalytic performance of the mesoporous silver were investigated using a temperature programmed CO oxidation technique in a fixed bed reactor. The mesoporous silver material that was pretreated with $H_2$ exhibited an excellent catalytic activity compared to the as-prepared and $O_2$-pretreated catalysts. Moreover, this present mesoporous silver material showed good catalytic stability. For the CO oxidation, the apparent activation energy of the $H_2$-pretreated mesoporous silver catalyst was $61{\pm}0.5\;kJ\;mol^{-1}$, which was also much lower than the as-prepared ($132{\pm}1.5\;kJ\;mol^{-1}$) and $O_2$-pretreated ($124{\pm}1.4\;kJ\;mol^{-1}$) catalysts.

Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ

  • Ramirez-Gonzalez, Daniel;Cruz-Rivera, Jose de J.;Tiznado, Hugo;Rodriguez, Angel G.;Guillen-Escamilla, Ivan;Zamudio-Ojeda, Adalberto
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In this work, we report the use of caffeine as an alternative source of nitrogen to successfully dope graphene (quaternary 400.6 eV and pyridinic at 398 eV according XPS), as well as the growth of silver nanowires (in-situ) in the surface of nitrogen doped graphene (NG) sheets. We used the improved graphene oxide method (IGO), chemical reduction of graphene oxide (GOx), and impregnation with caffeine as source of nitrogen for doping and subsequently, silver nanowires (NW) grow in the surface by the reduction of silver salts in the presence of NG, achieving a numerous of growth of NW in the graphene sheets. As supporting experimental evidence, the samples were analyzed using conventional characterization techniques: SEM-EDX, XRD, FT-IR, micro RAMAN, TEM, and XPS.

Improvement of Metallic Micro-Structure Precision Employing Two-photon Induced Photoreduction Process (이광자 흡수 광환원 공정을 이용한 마이크로 금속형상 제작의 정밀화에 관한 연구)

  • Son, Yong;Lim, Tae-Woo;Yang, Dong-Yol;Prem, Prabhakaran;Lee, Kwang-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.754-760
    • /
    • 2008
  • A two-photon induced photoreduction process suggests a possibility for fabricating complicated metallic microstructures which can be applied to 3-D micro-circuits and optical devices, etc. The process employs the photoreduction of silver ions in a metallic solution which is composed of metallic salt ($AgNO_3$) and watersoluble polymer ((poly(4-styrenesulfonique acid) 18wt. % in $H_2O$, $(C_8H_8O_3S)_n$)). In this process, the improvement of the resolution and the uniformity of fabricated metallic structures are important issues. To address these problems, continuous forming window (CFW) is obtained from a parametric study on the conditions of laser power and scanning velocity and the direct seed generation (DSG) method is proposed. Silver nano particles are uniformly generated in a metallic solution through the DSG method, which enables the decrease of a laser power to trigger the photoreduction of silver ions as well as the increase of metal contents in a metallic solution. So the two-photon induced photoreduction property of a metallic solution is improved. Through this work, precise silver patterns are fabricated with a minimum line width of 400 nm.

Silver (I)- Schiff-base complex intercalated layered double hydroxide with antimicrobial activity

  • Barnabas, Mary Jenisha;Parambadath, Surendran;Nagappan, Saravanan;Chung, Ildoo;Ha, Chang-Sik
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.373-383
    • /
    • 2021
  • In this work, silver nitrate complexes of sulfanilamide-5-methyl-2-thiophene carboxaldehyde (SMTCA) ligand intercalated Zn/Al-layered double hydroxide [Ag-SMTCA-LDH] were synthesized for the potential application as an antimicrobial system. The SMTCA ligand was synthesized by reacting sulfanilamide and 5-methyl-2-thiophene carboxaldehyde in methanol and further complexation with silver nitrate metal ions [Ag-SMTCA]. The structural analyses of synthesized compounds confirmed an intercalation of Ag-SMTCA into Zn/Al-NO3-LDH by flake/restacking method. SMTCA, Ag-SMTCA and Ag-SMTCA-LDH were characterized by 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). It was found that Ag-SMTCA-LDH exhibited good antimicrobial activity against both gram-positive (Bacillus subtilis, [B. subtilis], Staphylococcus aures, [S. aureus]) and gram-negative (Escherichia coli, [E. coli], Pseudomonas aeruginosa [P. aeroginosa]) bacteria as well as excellent antioxidant activity.

Antioxidative and antiproliferative effects of propolis-reduced silver nanoparticles

  • Tan, Gamze;Ilk, Sedef;Foto, Fatma Z.;Foto, Egemen;Saglam, Necdet
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.139-150
    • /
    • 2021
  • In this study, phytochemicals present in Propolis Extract (PE) were employed as reducing and stabilizing reagents to synthesize silver nanoparticles. Three propolis-reduced silver nanoparticles (P-AgNPs1-3) were synthesized using increasing amounts of PE. P-AgNPs were treated with different cancer cells-lung (A549), cervix (HeLa) and colon (WiDr) - for 24, 48 and 72 h to evaluate their anti-proliferative activities. A non-cancerous cell type (L929) was also used to test whether suppressive effects of P-AgNPs on cancer cell proliferation were due to a general cytotoxic effect. The characterization results showed that the bioactive contents in propolis successfully induced particle formation. As the amount of PE increased, the particle size decreased; however, the size distribution range expanded. The antioxidant capacity of the particles increased with increased propolis amounts. P-AgNP1 exhibited almost equal inhibitory effects across all cancer cell types; however, P-AgNP2 was more effective on HeLa cells. P-AgNPs3 showed greater inhibitory effects in almost all cancer cells compared to other NPs and pure propolis. Consequently, the biological effects of P-AgNPs were highly dependent on PE amount, NP concentration, and cell type. These results suggest that AgNPs synthesized utilizing propolis phytochemicals might serve as anti-cancer agents, providing greater efficacy against cancer cells.