• Title/Summary/Keyword: Nano-scale

Search Result 1,072, Processing Time 0.027 seconds

Microstructure and Characteristics of Ag-SnO2 Contact Materials Prepared by Magnetic Pulsed Compaction (자기펄스 압축성형법으로 성형된 Ag-SnO2 접점소재의 미세조직 및 특성)

  • Park, J.S.;Kim, Y.J.;Lee, M.H.;Lee, H.S.;Hong, S.J.;Lee, J.K.
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.372-377
    • /
    • 2011
  • In this study, we reported the microstructure and properties of Ag-$SnO_2$ contact materials fabricated by a controlled milling process with subsequent consolidation. The milled powders were consolidated to bulk samples using a magnetic pulsed compaction process. The nano-scale $SnO_2$ phases were distributed homogeneously in the Ag matrix after the consolidation. The relative density and hardness of the Ag-$SnO_2$ contact materials were 95~96% and 89~131 Hv, respectively.

Experimental Study on the Flow Hysteresis Phenomenon in a Supersonic Nozzle (초음속 노즐에서 발생하는 유동 이력현상에 대한 실험적 연구)

  • Nam, Jong-Soon;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.206-212
    • /
    • 2011
  • Hysteresis phenomena in fluid flow systems are frequently encountered in many industrial and engineering applications and mainly appear during the transient processes of change of the pressure ratio. Shock-containing flow field in supersonic nozzles is typically subject to such hysteresis phenomena, but associated flow physics is not yet understood well. In the present study, experimental work has been carried out to investigate supersonic nozzle flows during the transient processes of change in the nozzle pressure ratio. Time-dependent surface wall pressures were measured by a multiple of pressure transducers and the flow field was visualized using a nano-spark Schlieren optical method. The results obtained show that the hysteresis phenomenon is strongly dependent on the nozzle geometry as well as the time scale of the change of pressure ratio.

  • PDF

Design of Extendable XOR Gate Using Quantum-Dot Cellular Automata (확장성을 고려한 QCA XOR 게이트 설계)

  • You, Young-Won;Kim, Kee-Won;Jeon, Jun-Cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.631-637
    • /
    • 2016
  • Quantum cellular automata (QCA) are one of the alternative technologies that can overcome the limits of complementary metal-oxide-semiconductor (CMOS) scaling. It consists of nano-scale cells and demands very low power consumption. Various circuits on QCA have been researched until these days, and in the middle of the researches, exclusive-OR (XOR) gates are used as error detection and recover. Typical XOR logic gates have a lack of scalable, many clock zones and crossover designs so that they are difficult to implement. In order to overcome these disadvantages, this paper proposes XOR design using majority gate reduced clock zone. The proposed design is compared and analysed to previous designs and is verified the performance.

Fabrication of SOI FinFET devices using Aresnic solid-phase-diffusion (비소 고상확산방법을 이용한 MOSFET SOI FinFET 소자 제작)

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.133-134
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the n-type fin field-effect-transistor (FinFET) with a 20 nm gate length by solid-phase-diffusion (SPD) process is presented. Using As-doped spin-on-glass as a diffusion source of arsenic and the rapid thermal annealing, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. Single channel and multi-channel n-type FinFET devices with a gate length of 20-100 nm was fabricated by As-SPD and revealed superior device scalability.

  • PDF

Highly-conformal Ru Thin Films by Atomic Layer Deposition Using Novel Zero-valent Ru Metallorganic Precursors and $O_2$ for Nano-scale Devices

  • Kim, Su-Hyeon
    • Electrical & Electronic Materials
    • /
    • v.28 no.2
    • /
    • pp.25-33
    • /
    • 2015
  • Ruthenium (Ru) thin films were grown on thermally-grown $SiO_2$ substrates by atomic layer deposition (ALD) using a sequential supply of four kinds of novel zero-valent Ru precursors, isopropyl-methylbenzene-cyclohexadiene Ru(0) (IMBCHDRu, $C_{16}H_{22}Ru$), ethylbenzen-cyclohexadiene Ru(0) (EBCHDRu, $C_{14}H_{18}Ru$), ethylbenzen-ethyl-cyclohexadiene Ru(0) (EBECHDRu, $C_{16}H_{22}Ru$), and (ethylbenzene)(1,3-butadiene)Ru(0) (EBBDRu, $C_{12}H_{16}Ru$) and molecular oxygen (O2) as a reactant at substrate temperatures ranging from 140 to $350^{\circ}C$. It was shown that little incubation cycles were observed for ALD-Ru processes using these new novel zero-valent Ru precursors, indicating of the improved nucleation as compared to the use of typical higher-valent Ru precursors such as cyclopentadienyl-based Ru (II) or ${\beta}$-diketonate Ru (III) metallorganic precursors. It was also shown that Ru nuclei were formed after very short cycles (only 3 ALD cycles) and the maximum nuclei densities were almost 2 order of magnitude higher than that obtained using higher-valent Ru precursors. The step coverage of ALD-Ru was excellent, around 100% at on a hole-type contact with an ultra-high aspect ratio (~32) and ultra-small trench with an aspect ratio of ~ 4.5 (top-opening diameter: ~ 25 nm). The developed ALD-Ru film was successfully used as a seed layer for Cu electroplating.

  • PDF

Lithographic Microfabrication for Nano/Micro-Objects by using Two-Photon Polymerization Technique

  • Lee, Kwang-Sup;Kang, Seung-Wan;Kim, Ran-Hee;Kim, Ju-Yeon;Kim, Won-Jin;Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol;Sun, Hong-Bo;Kawata, Satoshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.15-16
    • /
    • 2006
  • Since two-photon polymerization (TPP) emerged as a new technology over a decade ago, a large variety of micro-objects including 3-D micro-optical components, micromechanical devices, and 3-D photonic crystals have been fabricated using TPP with a high spatial resolution of approximately submicron scale to 100 nm. Recent efforts have been made to improve the fabrication efficiency and precision of micro-objects obtained with TPP; in particular, many studies have been carried out with the aim of developing efficient two-photon absorbing chromophores. In this presentation, we will discuss our efforts to develop highly efficient two-photon absorbing materials and also describe recent attempts to enhance the resolution and to improve the fabrication efficiency of nanofabrications based on TPP.

  • PDF

Study on the Frictional Characteristics of Micro-particles for Tribological Application (미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰)

  • Sung, In-Ha;Han, Hung-Gu;Kong, Ho-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

Review on Molecular Simulation of Graphene from a Tribological Perspective (트라이볼로지 관점에서의 그래핀 분자시뮬레이션 연구동향)

  • Kim, Hyun-Joon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.55-63
    • /
    • 2020
  • Recently, graphene has attracted considerable attention owing to its unique electrical, optical, thermal, and mechanical properties. The broad spectrum of applications from optics, sensors, and electronics to biodevice have been proposed based on these properties. In particular, graphene has been proposed as a protective coating layer and solid lubricant for microdevices and nanodevices because of its high mechanical strength, chemical inertness, and low friction characteristics. During the past decade, extensive efforts have been made to explore the tribological characteristics of graphene under various conditions and to expand its applicability. In addition to the experimental approaches, the molecular simulations performed provide fundamental insights into the friction and wear characteristics of graphene resulting from molecular interactions. This work is a review of the studies conducted over the past decade on the tribological characteristics of graphene using molecular simulation. These studies demonstrate the principal mechanisms of the superlubricity of graphene and help clarify the influences of surface conditions on tribological behavior. In particular, the investigation of the effects of the number of layers, strength of adhesion to the substrate, surface roughness, and commensurability provides deeper insights into the tribological characteristics of graphene. These fundamental understandings can help elucidate the feasibility of graphene as a protective coating layer and solid lubricant for microdevices and nanodevices.

The Effect of Dispersoid on Yield Strength of Dispersion Strengthened Cu Alloys Fabricated by Spray Forming and Reactive Spray Forming (분무성형 및 반응분무성형법으로 제조된 분산강화 동합금의 항복강도에 미치는 분산상의 영향)

  • Lee Jongsang;Jung J. Y.;Lee Eon-Sik;Park W. J.;Ahn S.;Kim Nack J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.38-46
    • /
    • 1999
  • Dispersion strengthened Cu alloys have been manufactured by spray forming and also by reactive spray forming, followed by hot extrusion of the spray deposited billets. The size of dispersed particles in the reactive spray formed alloy was much finer than that in the spray formed alloy. That was because the dominant chemical reaction between Ti and B had occurred in Cu-Ti-B alloy melt in spray forming while it had occurred after deposition of droplets in reactive spray forming. The yield strength of the reactive spray formed alloy was greater than that of the spray formed alloy. To understand the mechanism responsible for this observed strengthening, the yield strength of two Cu alloys were analyzed using the dislocation pile-up model and Orowan mechanism, which were fairly consistent with the experimental results. Increase in yield strength of reactive spray formed alloy relative to spray formed alloy was largely attributed to nano-scale TiB dispersoids.

  • PDF

Electron Energy Loss Spectroscopy (EELS) Application to Mineral Formation (전자에너지 손실분광 분석법을 이용한 광물에서의 정량적 철 산화수 측정과 분석)

  • Yang, Kiho;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • The oxidation states of structural Fe in clay minerals often reflect the paleo-redox conditions of the depositional environments. It is inevitable to utilize the high resolution of transmission electron microscopy (TEM) to investigate the mechanism of mineral transformation at nano-scale. The applications of TEM- electron energy loss spectroscopy (EELS) for quantification of $Fe(III)/{\Sigma}Fe$ from the K-nontronite formation associated with structural Fe(III) reduction in nontronite under deep subseafloor environment were demonstrated. In particular, quantification of the changes in Fe-oxidation state at nanoscale is essential to understand the mechanisms of minerals formation. The procedure of EELS acquisition, quantitative determination of Fe-oxidation states, and advantages of EELS techniques were discussed.