• Title/Summary/Keyword: Nano-processing

Search Result 563, Processing Time 0.026 seconds

Finite Element Analysis on the Impactive Deformation of a Cu Particle in Cold Spraying Processing : Effect of Velocity (저온분사 공정에서 구리분말 충돌속도 변화에 따른 충돌변형 거동의 유한요소해석)

  • Cho, Kyu-Jin;Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.227-233
    • /
    • 2008
  • Dynamic plastic deformation behavior of copper particles occurred during the cold spray processing was numerically analyzed using the finite element method. The study was to investigate the impact as well as the heat transfer phenomena, happened due to collision of the copper particle of $20{\mu}m$ in diameter with various initial velocities of $300{\sim}600m/s$ into the copper matrix. Effective strain, temperature and their distribution were investigated for adiabatic strain and the accompanying adiabatic shear localization at the particle/substrate interface.

Effect of Oxygen in the Synthesis of ZnO Nanowires (ZnO 나노선의 합성에서의 미량산소의 영향)

  • Park, Kyung-Su;Choi, Young-Jin;Park, Jae-Gwan;Kang, Gyo-Sung;Lim, Dong-Gun;Park, Jae-Hwan
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.458-462
    • /
    • 2007
  • The effect of oxygen in the synthesis of oxide nanowires by using carbothermal reduction process have been studied thermodynamically and kinetically. By using laboratory air, ZnO nanowires could be fabricated in the carbothermal reduction process and a metal oxidation process. As the processing pressure decreases, the diameter of the nanowires decreases and the oxygen vacancy increases. As the processing pressure increases, the oxygen vacancy decreases and the shape of the ZnO becomes plate-like.

Magnetic Properties of Activated Quartz Nanocomposite

  • N.N., Mofa;T.A., Ketegenov;Z.A., Mansurov;Soh, Hyun-Jun;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.9-15
    • /
    • 2007
  • The materials showing high structure dispersion with functional properties were developed on the quartz base and those were obtained by mechano-chemical reaction technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 1050nm showing magnetic, electrical properties and others. The similarity of the structure of surface layers of quartz particles subjected to mechano-chemical processing and nano-structure cluspol (clusters in a polymer matrics) material was alsoconfirmed by the fact that the characteristics of ferromagnetic quartz of insulating nano-composite powder were changed with time, after its preparing process was completed.

Development of nano-positioner using fiber optic EFPI sensor (광섬유 EFPI 센서를 이용한 나노 이송장치의 개발)

  • Park, Sang-Wuk;Kim, Dae-Hyun;Kim, Chun-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.302-307
    • /
    • 2005
  • Precision displacement of less than a few nm resolution was measured in real-time using fiber optic EFPI sensor. The novel method for real-time processing of analyzing EFPI output signal was developed and verified. Linearity in the mean values of interferometric light intensity among adjacent fringes was shown and verified the sinusoidal approximation algorithm that estimates past and coming fringe values. Real-time signal processing program was developed and the intensity signal of the EFPI sensor was transformed to the phase shift with this program. The resolution below $0.36{\sim}8.6$ nm in the displacement range of $0{\sim}300{\mu}m$ was obtained. The nano-positioner with a piezoelectric actuator and the EFPI sensor system was designed and tested. The positioner successfully reached to the desired destination within 1 nm accuracy.

A Sensor Device Manager Supporting Sensor Transparency (센서 투명성을 지원하는 센서 디바이스 매니저)

  • Sang-Ho, Bang;Seongbae Eun
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.998-1000
    • /
    • 2008
  • 센서 노드 운영체제는 응용 프로그래머의 개발 지원 및 체계적인 센서 관리를 위하여 센서 투명성을 지원해야 한다. 하지만 기존 센서 노드 운영체제들은 센서투명성을 지원하지 못한다. 센서 디바이스 드라이버를 응용이 직접 작성해야 하며 다양한 센서를 위한 공통 인터페이스를 제공하지 못한다. 본 논문에서는 센서 투명성을 지원하는 센서 디바이스 매니저를 제안한다. ETRI에서 개발한 Nano-Q+에서 센서 디바이스 매니저 기능을 구현하기 위하여 센서노드 플랫폼, 응용 API, 디바이스 매니저, HAL을 설계하고 구현하였다. 또한, 기존 Nano-Q+와 성능을 비교하고 평가하였다. 센서디바이스 매니저를 구현하여도 처리 속도 및 용량에 대한 성능 저하가 없음을 확인하였다.

Durable High Performance Single Layer Anti-Reflective Coatings via Wet UV Curing Technology

  • Thies, Jens;Currie, Edwin;Meijers, Guido;Southwell, John;Chawla, Chander
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.98-100
    • /
    • 2004
  • We report a novel manner for preparing single layer anti-reflective coatings with excellent optical properties (<1% reflection) over a broad wavelength regime. The technology is based upon the self-assembly and UV curing of reactive nano-particles, leading to nano-structured coatings with a gradient in refractive index. The single processing step leading to such coatings is fast, robust and cost effective. Furthermore in this paper we will address the mechanical durability of such nano-structured coatings.

  • PDF

Influence of a Glasses Frame Processing on the Properties of Eco-friendly Cellulose Acetate Sheet (친환경 셀룰로오스 아세테이트 판재의 안경테 가공 공정별 물성 특성 연구)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Go, Young Jun;Park, Dae Jin;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Purpose: For optimizing properties of final glasses frame, the aim of this study is to examine the correlation of processing conditions and properties of cellulose acetate (CA) sheets through the investigation of properties of CA sheets prepared under processing steps. Methods: The properties of CA sheets were investigated in terms of different glasses frame processing conditions, bending process, barrel process, and ultrasonic cleaning process. CA sheets prepared through the sequential processing were examined by various analysis: gloss, mechanical properties, thermal properties. Results: After barrel process, hardness and tensile strength of CA sheet were increased. However, bending strength and impact strength were decreased. It is suggested the CA sheet had became rather stiff state (brittle). Also, in degradation temperature region of plasticizer, about 3% of reduction in plasticizer weight was confirmed upon TGA analysis. Conclusions: Glasses frame process, especially in the barrel process have a profound influence on the properties of CA sheet owing to reduction of total amount of plasticizer.

Consolidation and Mechanical Property of Rapidly Solidified Al-20 wt% Si Alloy Powders by Continuous Equal Channel Multi-Angular Pressing (연속 다단 ECAP 공정을 통한 급속응고 Al-20 wt% Si 합금 분말의 고형화 및 특성 평가)

  • Yoon, Seung-Chae;Bok, Cheon-Hee;Seo, Min-Hong;Hong, Soon-Jik;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • In this study, the bottom-up powder metallurgy and the top-down severe plastic deformation (SPD) techniques for manufacturing bulk nanomaterials were combined in order to achieve both full density and grain refinement without grain growth of rapidly solidified Al-20 wt% Si alloy powders during consolidation processing. Continuous equal channel multi-angular processing (C-ECMAP) was proposed to improve low productivity of conventional ECAP, one of the most promising method in SPD. As a powder consolidation method, C-ECMAP was employed. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructures of the ECMAP processed materials. It was found that effective properties of high strength and full density maintaining nanoscale microstructure are achieved. The proposed SPD processing of powder materials can be a good method to achieve fully density and nanostructured materials.

Preparation of Polymer/Drug Nano- and Micro-Particles by Electrospraying

  • Lee, Jong-Hwi;Park, Chul-Ho;Kim, Min-Young;Yoo, Ji-Youn;Kim, Ki-Hyun;Lee, Jong-Chan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.217-217
    • /
    • 2006
  • The surface energy control capability of electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. Herein, the one step nano-encapsulation of protein drugs using electrospraying was developed. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance between electric potentials, etc were examined to obtain the maximum efficiency. The recovery of particles was found relatively high as could be conjectured based on the principle of electrospraying. When organic solvents were employed, the processing windows of electrospraying were relatively narrow than water systems. Efficient nano-encapsulation of BSA with polymers was conveniently achieved using electrospraying at above 12 kV.

  • PDF