• 제목/요약/키워드: Nano-positioning system

검색결과 42건 처리시간 0.035초

기계장비 제어특성 시뮬레이션 플랫폼 기술 (Accuracy Simulation Technology for Machine Control Systems)

  • 송창규;김병섭;노승국;이성철;민병권;정영훈
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

광섬유 EFPI 센서를 이용한 실시간 고정밀 변위 측정 (Real-time Measurement of Precision Displacement using Fiber Optic EFPI Sensor)

  • 박상욱;김대현;김천곤;홍창선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.154-157
    • /
    • 2003
  • Precision displacement of less than a few nm resolution was measured in real-time using fiber optic EFPI sensor. The novel method for real-time processing of analyzing EFPI output signal was developed and verified. Linearity in the mean values of interferometric light intensity among adjacent fringes was shown, and the sinusoidal approximation algorithm that estimates past and coming fringe values was verified through the linearity. Real-time signal processing program was developed, and the intensity signal of the EFPI sensor was transformed to the phase shift with this program. The resolution below 0.4 ~ 10 nm in the displacement range of $0 ~ 300\mu\textrm{m}$ was obtained by reducing the photodetector noise using low-pass filter and signal averaging. The nano-translation stage with a Piezo-electric actuator and the EFPI sensor system was designed and tested. This stage successfully reached to the desired destination in $15\mu\textrm{m}$ range within 1 nm accuracy.

  • PDF

광소자 정렬용 초정밀 다축 스테이지 개발 (Development of Multi-Axis Ultra Precision Stage for Optical Alignment)

  • 정상화;이경형;김광호;차경래;김현욱;최석봉;박준호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.213-218
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

고진공 환경중 고출력 초음파 모터 이송 스테이지의 나노미터 위치 제어 (Nano-Positioning of High-Power Ultrasonic Linear Motor Stage in High-Vacuum Environment)

  • 김완수;이동진;이선규
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1613-1622
    • /
    • 2010
  • 본 연구는 고진공 환경중 초음파 리니어 스테이지의 나노미터 위치제어를 기술하고 있다. 고진공 환경 중 초정밀 위치 제어 시스템에 응용하기 위해 3 차 종진동 모드와 6 차 횡진동 모드를 가지는 BLT를 개발 했다. 안정적인 고출력을 위해 BLT 는 하나의 공진 주파수로 두 개의 모드 진동을 발생 시켜야 한다. 하나의 공진 주파수를 이용 하기 위해 어드미턴스를 변화시켜 각 모드의 공진 주파수를 일치시켜 조건이 다른 대기 환경에서 안정적인 고출력을 얻을 수 있었다. 기압 변화에 따라 구동 특성이 달라지는 시스템을 제어하기 위해 마찰력 변화에 따른 비선형 특성을 보상한 NCTF 제어를 사용했다. 설계된 제어기를 이용해 고진공 환경에서 시스템을 나노미터 정도로 제어하는 결과를 얻을 수 있었다.

3-Axis Gyro Sensor based on Servo Motion Control 시스템 개발 (3-Axis Gyro Sensor based on Servo Motion Control System)

  • ;이원부;박수홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.725-727
    • /
    • 2010
  • 선박의 운동을 시뮬레이터 하기 위해서는 Pitch, Roll, Yaw의 세가지 선박 운동 요소를 시뮬레이터 할 수 있어야 한다. 이를 위해 선박의 운동을 시뮬레이터 할 수 있는 6축의 자유도를 가지는 모션 시뮬레이터를 설계 개발 하였다. Gyro Sensor based Servo Motion Control 알고리즘은 선박의 6자유도운동을 분석하여 그에 대응 할 수 있는 Motion Control 동요안정화 제어장치를 개발하였다.

  • PDF

자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어 (Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation)

  • 이세한;강재관;김용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

나노 가이드 시스템에서 초기 변위의 영향에 관한 연구 (Effect of an initial displacement on a nano-guiding system)

  • 이동연;이무연;권대갑;박준호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1396-1403
    • /
    • 2006
  • This study shows that the system performance of a positioning system composed of a piezoelectric actuator-driven flexure guide depends largely on the preload applied on the flexure guide and the driving input amplitude. We used a flexure guided system that had an original resonant frequency of 54Hz. Our experiment showed that we could increase the driving bandwidth above the original resonant frequency, for a case involving a large preload and a small input amplitude. Results show that there is a specific 'separation frequency' where the response of the moving mass of the flexure system decouples from the response oi the piezoelectric actuator, and this specific separation frequency can be selected by a proper choice of the preload and the input amplitude. To find the separation frequency, sine sweep tests were performed. To confirm the increased system bandwidth frequency, open-loop sine tracking experiments were performed. Test results show that the system responds very well up to 130 Hz frequency higher than the original natural frequency (54Hz).

  • PDF

나노 가이드 시스템에서 초기 변위의 영향에 관한 연구 (Effect of an Initial Displacement on a Nano-guiding System)

  • 이무연;권대갑;이동연
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.346-354
    • /
    • 2006
  • This study shows that the system performance of a positioning system composed of a piezoelectric actuator-driven flexure guide depends largely on the preload applied on the flexure guide and the driving input amplitude. We used a flexure guided system that had an original resonant frequency of 54 Hz. Our experiment showed that we could increase the driving bandwidth above the original resonant frequency, for a case involving a large preload and a small input amplitude. Results show that there is a specific 'separation frequency' where the response of the moving mass of the flexure system decouples from the response of the piezoelectric actuator, and this specific separation frequency can be selected by a proper choice of the preload and the input amplitude. To find the separation frequency, sine sweep tests were performed. To confirm the increased system bandwidth frequency, open-loop sine tracking experiments were performed. Test results show that the system responds very well up to 130 Hz frequency higher than the original natural frequency (54 Hz).

Fabrication Uncertainty and Noise Issues in High-Precision MEMS Actuators and Sensors

  • Cho, Young-Ho;Lee, Won-Chul;Han, Ki-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.280-287
    • /
    • 2002
  • We present technical issues involved in the development of actuators and sensors for applications to high-precision Micro Electro Mechanical System (MEMS). The technical issues include fabrication uncertainty and noise disturbance, causing major difficulties for MEMS to achieve high-precision actuation and detection functions. For nano-precision actuators, we solve the fabrication instability and electrical noise problems using digital actuators coupled with nonlinear mechanical modulators. For the high-precision capacitive sensors, we present a branched finger electrodes using high-amplitude anti-phase sensing signals. We also demonstrate the potential applications of the nanoactuators and nanodetectors to high-precision positioning MEMS.