• Title/Summary/Keyword: Nano-positioning stage

Search Result 32, Processing Time 0.032 seconds

Optimal Design and Performance Evaluation of PZT-driven Stage Using Min-Max Algorithm (Min-Max 알고리즘을 이용한 피에조 구동형 스테이지의 최적설계 및 성능평가)

  • Choi Kee-Bong;Han Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.130-136
    • /
    • 2005
  • This paper presents an optimal design and the performance evaluation of two-axis nano positioning stage with round notched flexure hinges. A flexure hinge mechanism with round notched flexure hinges is to guide the linear motions of a moving plate in the nano positioning stage. A Min-Max algorithm is applied to the design of the flexure hinge mechanism for nano positioning stage. In the design process, the structure of the flexure hinge mechanism is fixed, then the radius of a round hole and the width of two round holes are chosen as design variables, and finally the do sign variables are calculated by the Min-Max algorithm. The machined flexure hinge mechanism, stack type PZTs for actuation and capacitance type displacement sensors for position measurement are assembled into the nano positioning stage. The experimental results of the manufactured nano positioning stage show the first modal resonance frequency of 197 Hz, the operating range of 40 um, and the resolution of 3 nm.

Development of Nano Positioning Stage using PZT Actuator (압전 액츄에이터를 이용한 초정밀 위치제어장치 개발)

  • 정상화;차경래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.214-218
    • /
    • 2002
  • In recent years, precision positioning stage is demanded for some industrial fields such as semi-conductor lithography, ultra precision machining, and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of 3-axis positioning, characteristics of motion and resolution are verified.

  • PDF

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.

Nanometer positioning control using nonlinear dynamics of rolling guide

  • Futami, Shigeru;Furutani, Akihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1312-1315
    • /
    • 1990
  • Nanometer positioning control with high velocity and long stroke is discussed. A one-axis stage mechanism driven by an AC linear motor and guided by a rolling ball guide has been constructed. Coarse and fine position controls are designed by using nonlinear dynamics of the rolling guide. Switching from coarse positioning to fine positioning is studied.

  • PDF

The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage (평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF

Development of a 3-axis fine positioning stage : Part 2. Experiments and performance evaluation (초정밀 3축 이송 스테이지의 개발 :2. 동특성 실험 및 성능 평가)

  • Kang, Joong-Ok;Kim, Man-Dal;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1207-1210
    • /
    • 2003
  • This paper deals with experiments for dynamic characteristics and performance evaluation of the 3-axis fine positioning stage developed in [1]. The features of the developed fine positioning stage are the long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design. The dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the actuator and the stage design. Performance evaluation is also made for the PZT actuators as well as the stage positioning accuracy. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning.

  • PDF

Development of Multi-axis Nano Positioning Stage for Optical Alignment (광소자 정렬용 극초정밀 다축 위치 제어장치 개발)

  • 정상화;이경형;차경래;김현욱;최석봉;김광호;박준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.304-307
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

A Study on the Development and Compensation of precision Multi-Axis Positioning System (초정밀 다축 위치제어장치 개발 및 보정에 관한 연구)

  • 정상화;차경래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.455-458
    • /
    • 2002
  • In recent years, precision positioning stage is demanded fur some industrial fields such as semi conductor lithography, ultra precision machining and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of it such as 3-axis positioning, characteristic of motion and resolution is verified.

  • PDF

A New Mode Switching Control for Fast Settling and High Precision Positioning (고속 세틀링과 고정밀 위치 제어를 위한 모드 변경 제어 기법)

  • Kim, Jung-Jae;Choi, Young-Man;Kim, Ki-Hyun;Gweon, Dae-Gab;Hong, Dong-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.1-4
    • /
    • 2006
  • Recently, with rapid development of digital media like semiconductor and large flat panel display, the manufacturing equipment is required to have high precision over large travel range. Moreover it should have high product throughput. To achieve high product throughput, a controller should perform fast point-to-point motion and high precision positioning after settling in spite of external disturbances or residual vibrations. We proposed a new mode switching control algorithm with an application to dual stage for long range and high precision positioning. The proposed algorithm uses a proximate time-optimal servomechanism for the fast settling and a time-delay controller for the high precision positioning. Experimental results show that the proposed method enables smooth mode switching and improves the settling time and the precision accuracy after settling by over than 33% and 45%, respectively.

  • PDF