• 제목/요약/키워드: Nano-particle solution

검색결과 198건 처리시간 0.025초

Preparation of Nano-Sized Tin Oxide Powder from Tin Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Kim, Dong-Hee
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.396-402
    • /
    • 2011
  • In this study, by using tin chloride solution as a raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the generated tin oxide powder depending on the inflow speed of the raw material solution are examined. When the inflow speed of the raw material solution is 2 ml/min, the majority of generated particles appear in the shape of independent polygons with average size above 80-100 nm, while droplet-shaped particles show an average size of approximately 30 nm. When the inflow speed is increased to 5 ml/min, the ratio of independent particles decreases, and the average particle size is approximately 80-100 nm. When the inflow speed is increased to 20 ml/min, the ratio of droplet-shaped particles increases, whereas the ratio of independent particles with average size of 80-100 nm decreases. When the inflow speed is increased to 100 ml/min, the average size of the generated particles is around 30-40 nm, and most of them maintain a droplet shape. With a rise of inflow speed from 2 ml/min to 5 ml/min, a slight increase of the XRD peak intensity and a minor decrease of specific surface area are observed. When the inflow speed is increased to 20 ml/min, the XRD peak intensity falls dramatically, although a significant rise of specific surface area is observed. When the inflow speed is increased to 100 ml/min, the XRD peak intensity further decreases, while the specific surface area increases.

Hydrate Salt법을 이용한 Nano BaTiO3 저온합성 메커니즘 (The Synthesis Mechanism of BaTiO3 Nano Particle at Low Temperature by Hydrate Salt Method)

  • 이창현;신효순;여동훈;하국현;남산
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.852-856
    • /
    • 2014
  • $BaTiO_3$ nano powder can be synthesized by hydrate salt method at $120^{\circ}C$ in air. Decreasing the thickness of thick film, the nano dielectric particle is needed in electronic ceramics. However, the synthesis of $BaTiO_3$ nano particle at low temperature in air and their mechanism were not reported enough. And ultrasonic treatment can be tried because of low temperature process in air. Therefore, in this study, the $BaTiO_3$ nano powder was synthesised with the synthesis time and ultrasonic treatment at $120^{\circ}C$ in air. In the synthesis process, the effects of process were evaluated. From the experimental observation, the synthesis mechanism was proposed. The homogeneous $BaTiO_3$ particle was synthesised by KOH salt solution at $120^{\circ}C$ for 1hour. It was conformed that the ultrasonic treatment effected on the increase of synthesis rate. After cutting the salt powder using FIB, $BaTiO_3$ nano particles observed homogeneously in the cross-section of the salt particle.

유체 플라즈마 방식을 사용한 은 나노파티클의 합성 (Synthesis of Silver Nano-particles by the Solution Plasma Sputtering Method)

  • 유승철;신홍직;최원석
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.216-218
    • /
    • 2016
  • In this study, we used not chemical and physical synthesis method but the solution plasma sputtering method in the synthesis of silver nano-particles. Synthesis of all the silver nano-particles was conducted for 1hour in 360 ml of distilled water and characteristics of changing the input voltage and frequency of the synthesised silver nano-particles by using the solution plasma sputtering method were analyzed through FE-SEM(Field Emission-Scanning Electron Microscope). We changed the input voltage from 8 kV to 10 kV in steps of 1 kV, input frequency from 20 kHz to 30 kHz in steps of 5 kHz in the solution plasma reactor with the advanced device which can control the DC voltage and frequency. We confirmed that the size of silver nano-particles were larger according to the change of the input voltage and frequency.

Effect of Nozzle Tip Size on the Fabrication of Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Kim, Donghee;Yu, Jaekeun
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.489-494
    • /
    • 2013
  • In this study, by using nickel chloride solution as a raw material, a nano-sized nickel oxide powder with an average particle size below 50 nm was produced by spray pyrolysis reaction. A spray pyrolysis system was specially designed and built for this study. The influence of nozzle tip size on the properties of the produced powder was examined. When the nozzle tip size was 1 mm, the particle size distribution was more uniform than when other nozzle tip sizes were used and the average particle size of the powder was about 15 nm. When the nozzle tip size increases to 2 mm, the average particle size increases to roughly 20 nm, and the particle size distribution becomes more uneven. When the tip size increases to 3 mm, particles with an average size of 25 nm and equal to or less than 10 nm coexist and the particle size distribution becomes much more uneven. When the tip size increases to 5 mm, large particles with average size of 50 nm partially exist, mostly consisting of minute particles with average sizes in the range of 15~25 nm. When the tip size increases from 1 mm to 2 mm, the XRD peak intensities greatly increase while the specific surface area decreases. When the tip size increases to 3 mm, the XRD peak intensities decrease while the specific surface area increases. When the tip size increases to 5 mm, the XRD peak intensities increase again while the specific surface area decreases.

SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 2. Effects of Synthesis Conditions on Iron Reactivities

  • Song, Ho-Cheol;Carraway, Elizabeth R.;Kim, Young-Hun
    • Environmental Engineering Research
    • /
    • 제10권4호
    • /
    • pp.174-180
    • /
    • 2005
  • Nano-sized iron was synthesized using borohydride reduction of $Fe^{3+}$ in aqueous solution. A wide range of synthesis conditions including varying concentrations of reagents, reagent feeding rate, and solution pH was applied in an aqueous system under anaerobic condition. The reactivity of nano-sized iron from each synthesis was evaluated by reacting the iron with TCE in batch systems. Evidence obtained from this study suggest the reactivity of iron is strongly dependent on the synthesis solution pH. The iron reactivity increased as solution pH decreased. More rapid TCE reduction was observed for iron samples synthesized from higher initial $Fe^{3+}$ concentration, which resulted in lower solution pH during the synthesis reaction. Faster feeding of $BH_4^-$ solution to the $Fe^{3+}$ solution resulted in lower synthesis solution pH and the resultant iron samples gave higher TCE reduction rate. Lowering the pH of the solution after completion of the synthesis reaction significantly increased reactivity of iron. It is presumed that the increase in the reactivity of iron synthesized at lower pH is due to less precipitation of iron (hydr)oxides or less surface passivation of iron.

폐네오디뮴 자석 침출용액으로부터 Slurry 환원법을 이용한 철 Nano 분말 제조 (Preparation of Iron Nano-particle by Slurry Reduction Method from Leaching Solution of Spent Nd magnet)

  • 안종관;강윤지;유혜빈;윤호성
    • 자원리싸이클링
    • /
    • 제23권6호
    • /
    • pp.22-29
    • /
    • 2014
  • 네오디뮴 폐자석 침출액으로부터 희유금속인 네오디뮴을 회수하는 연구와 함께 네오디뮴과 같이 침출되는 철의 부가가치를 높이는 연구가 필요하다. 본 연구에서는 네오디뮴과 같이 침출되는 철의 유용자원화를 위한 기초연구로 철 나노분말을 제조하는 실험을 수행하였다. 본 연구는 $FeCl_3$ 용액을 철 분말 원료로, 분산제는 $Na_4P_2O_7$와 Polyvinylpyrrolidone를 이용하였고, 환원제로는 $NaBH_4$, 철 나노분말 핵생성 촉진제 seed로 염화팔라듐을 사용하였다. 제조한 철 나노분말을 XRD, SEM을 이용하여 분말의 형상 및 크기를 분석하였다. Fe와 $NaBH_4$의 몰 비를 1 : 5로 조절하여 철 분말을 제조하였으며, 이 때 철 분말은 구형이었으며, 입도는 약 50 ~ 100 nm 였다. 분산제 $Na_4P_2O_7$의 경우 100 mg/L에서 철 이온의 제타포텐셜이 음의 값을 가졌고, $FeCl_3$ 과 PVP와 Pd의 질량비 1 : 4 : 0.001에서 분산이 양호하고, 입도가 100 nm 인 철 나노분말을 합성하였다. 같은 반응 조건에서 폐 Nd 침출액의 Fe 이온을 pH를 조절하여 슬러리화한 후 실험을 진행한 결과, pH 9에서 구형의 철 분말을 합성할 수 있었으며, 20 L 이상의 Scale-up 공정에서는 분산제 없이 환원제로 175 nm 크기의 철 분말을 합성할 수 있었다.

고해상도 방사선 영상을 위한 $Gd_2O_3:Eu^{3+}$ 나노 형광체 제조 및 광학적 특성 (Fabrication of $Gd_2O_3:Eu^{3+}$ Nano Phosphor and Optical Characteristics for High Resolution Radiation Imaging)

  • 김소영;강상식;박지군;차병열;최치원;이형원;남상희
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.148-152
    • /
    • 2007
  • In this paper, we have synthesized $Gd_2O_3:Eu^{3+}$ nano phosphor particle using a low temperature solution-combustion method. We have investigated the structure and the luminescent characteristic as the sintering temperature and europium concentration. From XRD(X-ray diffraction) and SEM(scanning electron microscope) results, we have verified that the phosphor particle was fabricated a spherical shape with $30{\sim}40nm$ particle size. From the photoluminescence results, the strong peak exhibits at 611 um and the luminescent intensity depends on europium concentration. $Gd_2O_3:Eu$ fine phosphor particle has shown excellent luminescent efficiency at 5 wt% of europium concentration. The phosphors calcinated at $500^{\circ}C$ have possessed the x-ray peaks corresponding to the cubic phase of $Gd_2O_3$. As calcinations temperature increased to $700^{\circ}C$, the new monoclinic phase has identified except cubic patterns. From the luminescent decay time measurements, mean lifetimes were $2.3{\sim}2.6ms$ relatively higher than conventional bulk phosphors. These results indicate that $Gd_2O_3:Eu$ nano phosphor is possible for the operation at the low x-ray dose, therefore, the application as medical imaging detector.

비타민 B1 유도체 Thiamine Dilauryl Sulfate의 나노 입자 제조를 통한 수용액의 용해도에 따른 항진균 활성 평가 (Effect of Solubility of Thiamine Dilauryl Sulfate Solution through the Manufacture of the Nano Paticles on Antifungal Activity)

  • 서용창;최운용;이춘근;조정섭;임태빈;정명훈;김성일;윤원병;이현용
    • 한국약용작물학회지
    • /
    • 제19권6호
    • /
    • pp.464-471
    • /
    • 2011
  • Conventional Thiamine Dilauryl Sulfate (TDS) powder has a low stability. In order to solve this problem, this study was performed to improve the solubility of TDS. The process for enhance solubility of TDS was nano grinding mill and ultrasonic dispersion process. TDS paticle was manufactured to nano size through nano grinding mill process. The size of TDS nanoparticle was measured as average 220 nm by DLS. And The TDS nanoparticle in water solution manufactured through ultrasonic dispersion process. The TDS nanoparticle in water solution was showed the highest solubility with 40% ethanol. These results was increased the concentration of TDS from 200 ppm to 240 ppm in water solution. The TDS nanoparticle in water solution showed diameter of Colletotrichum gloeosporioides growth with smaller than about 1.56 cm compared to the TDS paticle in water solution at same concentration. Also, TDS nanoparticle in water solution showed growth inhibition activity as 59.2% with higher than about 10% compared to the TDS paticle water solution in same concentration. Finally, TDS nanoparticle in water solution was increased solubility through nano grinding mill and ultrasonic dispersion process. Also, the increase of concentration in TDS nanopaticle in water solution according to solubility enhancement lead to an result enhancement of antifungal activity. Consequently, we suggested that the TDS nanoparticle in water solution was more effective than TDS particle in water solution owing to the sub-cellular particle size, ability to persistence and targeting to cell membrane of Colletotrichum gloeosporioides. Furthermore we expected the applicating possibility with bio pesticide.

噴霧熱分解 工程에 의한 인듐 酸化物 나노 粉末 製造 (Preparation of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process)

  • 유재근;박시현;손진군
    • 자원리싸이클링
    • /
    • 제13권6호
    • /
    • pp.16-25
    • /
    • 2004
  • 인듐 성분을 포함하는 원료용액을 분무열분해 시켜서 평균 입자크기 100 nm 이하의 인듐 산화물 나노 분말을 제조하였으며, 용액의 농도, nozzle tip 크기 및 공기의 유입속도 변화에 따른 생성된 분말들의 특성 변화를 파악하였다. 본 연구는 폐 ITO로부터 나노 크기의 ITO 분말을 제조하기 위한 전 단계 연구로 수행되었다. 원료용액 내의 인듐 성분의 농도가 40 g/l로부터 350 g/l로 증가됨에 따라 생성된 분말의 평균 입자크기는 20~30 nm로부터 50~60 nm로 점점 증가하는 반면 입도분포는 더욱 불균일하게 나타나고 있었으며, XRD peak의 강도는 점점 증가하고 비표면적은 감소되었다. Nozzle tip의 크기가 1 mm로부터 5 mm로 증가함에 따라 분말들의 평균 입자크기는 40 nm 정도로부터 100 nm 정도까지 점점 증가하고 입도분포는 더욱 불균일하게 나타나고 있었으며, XRD peak 강도는 증가하는 반면 비표면적은 감소되었다. 반응로 내로 유입되는 공기의 압력이 0.1 kg/cm$^2$로부터 0.5 kg/cm$^2$로 증가되는 경우, 분말의 평균 입자크기는 90~100 nm로 현저한 변화를 나타내지 않았다. 반면 공기압력이 1 kg/cm$^2$ 및 3 kg/cm$^2$로 증가하는 경우에는 평균 입자크기가 50~60 nm 정도까지 감소하였으며, XRD peak 강도는 감소하고 비표면적은 증가되었다.

분무열분해법(Spray Pyrolysis)에 의한 주석산화물이 도핑된 $In_2O_3$(ITO: Indium Tin Oxide)의 분말 제조에 대한 연구 (The Studies on synthesis of $SnO_2$ doped $In_2O_3$ (ITO: Indium Tin Oxide) powder by spray pyrolysis)

  • 김상헌
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.694-702
    • /
    • 2014
  • 마이크론 크기를 가지는 ITO(indium tin oxide) 입자들은 인듐과 틴의 수용성 전구체들과 유기 첨가제를 분무 열분해하여 얻었다. 유기 첨가제로서는 에틸렌글리콜과 시트르산을 이용하였다. 분무 열분해 시 에틸렌글리콜과 시트르산과 같은 유기첨가제를 첨가하지 않고 얻어진 ITO 입자들은 구형이며 속이 꽉찬 형태를 가지는데 비해 유기 첨가제를 첨가하여 분무 열분해를 하면 얻어지는 ITO 입자들은 유기 첨가제의 양이 증가 할수록 껍질이 얇고 다공성이 증대된 중공 입자가 얻어진다. 유기첨가제를 첨가하지 않고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 $700^{\circ}C$에서 두 시간 동안의 후소성과 24 시간동안의 습식 볼밀링에 의해 나노 크기의 ITO로 전환되지 않으나, 유기첨가제를 첨가하고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 $700^{\circ}C$에서 두 시간 동안의 후소성과 24 시간 동안의 습식 볼밀링에 의해 나노 크기의 ITO로 쉽게 전환되었다. 응집된 나노 크기의 ITO의 일차 입자의 크기를 Debye-Scherrer 식에 의해 계산하였고 ITO 입자를 압축하여 만든 펠렛의 표면저항을 측정하였다.