• Title/Summary/Keyword: Nano-particle solution

Search Result 195, Processing Time 0.022 seconds

Synthesis and Properties of Nano-sized Ni-Fe Alloy Particle Dispersed ${Al_2}{O_3}$Nanocomposite (나노크기 Ni-Fe 합금입자 분산${Al_2}{O_3}$ 나노복합재료의 합성 및 특성)

  • Nam, Gung-Seok;O, Seung-Tak;Lee, Jae-Seong;Jeong, Yeong-Geun;Kim, Hyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.986-990
    • /
    • 2001
  • An optimum route to fabricate the $A1_2O_3/Fe-Ni$ alloy nanocomposites with sound microstructure and enhanced mechanical properties as well as magnetism was investigated. To prepare homogeneous nanocomposite powders of Fe-Ni alloy and $Al_2O_3$, the solution-chemistry routes using $Al_2O_3 \; Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders were applied. Microstructural observation of the powder mixture revealed that the Fe-Ni alloy particles of about 20 nm in size were homogeneously surrounded $A1_2O_3$, forming nanocomposite powder. The hot-pressed composite showed improved fracture toughness and magnetic response. These results suggest that the synergy materials with an improved mechanical properties and excellent functionality can be fabricated by controlled powder preparation and consolidation processing.

  • PDF

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

Development of anti-corrosive coating technique for alloy plated steel sheet using silane based organic-inorganic hybrid materials (Silane계 유무기 하이브리드 적용 합금도금강판 내식성 향상 코팅 기술 개발)

  • Park, Jongwon;Lee, Kyunghwang;Park, Byungkyu;Hong, Shinhyub
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.295-303
    • /
    • 2013
  • Silane surface treatments have been developed as an alternative for toxic and carcinogenic chromate-based treatments for years. It is consistently observed that ultra-thin films offer excellent corrosion protection as well as paint adhesion to metals. The silane performance is comparable to, or in some cases better than, that of chromate layers. Based on the tetra-ethylorthosilicate(TEOS) and methlyl trieethoxysilane(MTES), inorganic sol was synthesized and formed hybrid networks with $SiO_2$ nano particle and polypropylene glycol(PPG) on Zn alloyed steel surface. According to SST results, addition of 10nm and 50nm $SiO_2$ nanoparticle in synthesized solution improved anti-corrosion property by its shear stress relaxation effect during curing process. Also, SST results were shown that anti-corrosive property was affected by the amounts of organic compounds.

Preparation of Lead-free Silver Paste with Nanoparticles for Electrode (나노입자를 첨가한 전극용 무연 silver 페이스트의 제조)

  • Park, Sung Hyun;Park, Keun Ju;Jang, Woo Yang;Lee, Jong Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.4
    • /
    • pp.219-224
    • /
    • 2006
  • Silver paste with low sintered temperature has been developed in order to apply electronic parts, such as bus electrode, address electrode in PDP (Plasma Display Panel) with large screen area. In this study, nano-sized silver particles with 10-30 nm were synthesized from silver nitrate ($AgNO_3$) solution by chemical reduction method and silver paste with low sintered temperature was prepared by mixing silver nanoparticles, conventional silver powder with the particle size 1.6 um and Pb-free frit. Conductive thick film from silver paste was fabricated by screen printing on alumina substrate. After firing at $540^{\circ}C$, the cross section and surface morphology of the thick films were analyzed by FE-SEM. Also, the sheet resistivity of the fired thick films was measured using the four-point technique.

Fabrication of α-Alumina Nanopowders by Thermal Decomposition of Ammonium Aluminum Carbonate Hydroxide (AACH) (암모늄 알루미늄 탄산염(hhCH)의 열분해에 의한 α-알루미나 나노분말 제조)

  • O, Yong-Taeg;Shin, Dong-Chan;Kim, Sang-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.242-246
    • /
    • 2006
  • [ ${\alpha}-Al_2O_3$ ] nanopowders were fabricated by the thermal decomposition and synthetic of Ammonium Aluminum Carbonate Hydroxide (AACH). Crystallite size of 5 to 8 nm were fabricated when reaction temperature of AACH was low, $8^{\circ}C$, and the highest $[NH_4{^+}][AlO(OH)_n{(SO_4){^-}}_{3-n/2}][HCO_3]$ ionic concentration to pH of the Ammonium Hydrogen Carbonate (AHC) aqueous solution was 10. The phase transformation fem $NH_4Al(SO_4)_2$, rhombohedral $(Al_2(SO_4)_3)$, amorphous-, ${\theta}-,\;{\alpha}-Al_2O_3$ was examined at each temperature according to the AACH. A Time-Temperature-Transformation (TTT) diagram for thermal decomposition in air was determined. Homogeneous, spherical nanopowders with a particle size of 70 nm were obtained by firing the 5 to 8 m crystallites, which had been synthesized from AACH at pH 10 and $8^{\circ}C,\;at\;1150^{\circ}C$ for 3 h in air.

Self-Aggregated Nanoparticles of Lipoic Acid Conjugated Hyaluronic Acid (히알루론산에 결합된 리포산 자기조립체의 제조 및 특성)

  • Hong, In-Rim;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.561-565
    • /
    • 2008
  • Hyaluronic acid (HA) is a natural glycosaminoglycan and is used widely in the pharmaceutical field. Lipoic acid (LA) helps the regeneration of exogenous and endogenous antioxidants such as Vitamin C and Vitamin E as well as glutathione. It also acts as antioxidant indirectly. Hydrophilic HA as a biodegradable and biocompatible polymer was conjugated with hydrophobic LA as an antioxidant to form the graft copolymer. The carboxyl group of HA was modified by adipic acid dihydrazide (ADH). The synthesis of HA-g-LA graft copolymers was characterized by FT-IR, $^1H$-NMR spectroscopy. The conjugates could form the self-assembled nanoparticles in aqueous solution. The particle size and critical aggregation concentration were verified to use the nanoparticle as a carrier fur the hydrophobic material.

Preparation and Characterization of Self-aggregated Nanoparticles of Chitosan-Lipoic Acid Conjugate (키토산-리포산 자기 조립체의 제조 및 특성)

  • Park, Eun-Ju;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.544-548
    • /
    • 2008
  • The objective of this study is to obtain the anti-oxidant nanoparticles based on biocompatible polymers. It was chosen to conjugate with chitosan as the biodegradable polymer and lipoic acid as the hydrophobic anti-oxidant. Lipoic acid helps the regeneration of exogenous and endogenous anti-oxidants vitamin as well as glutathione and hence acts as antioxidant indirectly. Chitosan was prepared from chitin which was deacetylated under alkali solution for the various reaction time. Lipoic acid-chitosan complex was confirmed by $^1H$-NMR. The critical aggregation concentration was measured using pyrene and the values were about $5{\times}10^{-3}$ g/L. The particle shapes and sizes of the chitosan-lipoic acid nano-particles were about 135 nm that measured by DLS and TEM.

Medicinal aspects of Murraya koenigii mediated silver nanoparticles

  • Mumtaz, Sumaira;Nadeem, Raziya;Sarfraz, Raja A.;Shahid, Muhammad
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.657-665
    • /
    • 2021
  • The present work aimed to explore green approach via aqueous leaves extract of Murraya koenigii (ALEMk) for the synthesis of silver nanoparticles (AgNPsMk) in single step. The synthesis process was visualized with a color change and monitored by employing UV/Visible spectroscopy and a clear peak attained at 420 nm confirming the synthesis of AgNPsMk. The possible functional groups present in the extract which participated in the synthesis of AgNPsMk were identified with the help of FTIR spectroscopy. Further characterization using TEM images revealed the spherical shape of AgNPsMk with average particle size of 20 nm displaying well dispersion throughout the solution. Pronounced antioxidant activities of AgNPsMk at increased concentrations observed which evidencing strong radical scavenging ability. Moreover, AgNPsMk exhibited strong antibacterial behavior when tested against bacterial strains of Escherichia coli and Bacillus subtilis. Moving ahead, in vitro cytotoxicity work revealed potent cell viability loss appearing in AU565 and HeLa cancer cell lines on exposure to AgNPsMk at increased concentration. Finally, in vivo assessment carried out inside male Wistar rats indicated non toxic effect on examined liver tissues besides biochemical analysis including bilirubin, alkaline phosphtase (ALP) and serum glutamate pyruvate transaminase (SGPT) which found within the normal range when compared with control. The prior research work profoundly apprises the potential of green synthesized AgNPsMk to play a significant role in biomedical applications and formulations.

Preparation of Vitamin E Acetate Nano-emulsion and In Vitro Research Regarding Vitamin E Acetate Transdermal Delivery System which Use Franz Diffusion Cell (Vitamin E Acetate를 함유한 Nano-emulsion 제조와 Franz Diffusion Cell을 이용한 Vitamin E Acetate의 경표피 흡수에 관한 In Vitro 연구)

  • Park, Soo-Nam;Kim, Jai-Hyun;Yang, Hee-Jung;Won, Bo-Ryoung;Ahn, You-Jin;Kang, Myung-Kyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.91-101
    • /
    • 2009
  • in the cosmetics and medical supply field as a antioxidant material. The stable nano particle emulsion of skin toner type containing VEA was prepared. To evaluate the skin permeation, experiments on VEA permeation to the skin of the ICR outbred albino mice (12 weeks, about 50 g, female) and on differences of solubility as a function of receptor formulations was performed. The analysis of nano-emulsions containing VEA 0.07 % showed that the higher ethanol contents the larger emulsions were formed, while the higher surfactant contents the size became smaller.In this study, vitamin E acetate (VEA, tocopheryl acetate), a lipid-soluble vitamin which is widely used A certain contents of ethanol in receptor phase increased VEA solubility on the nano-emulsion. When the ethanol contents were 10.0 % and 20.0 %, the VEA solubility was higher than 5.0 % and 40.0 %, respectively. The type of surfactant in receptor solution influenced to VEA solubility. The comparison between three kind surfactants whose chemical structures and HLB values are different, showed that solubility of VEA was increased as order of sorbitan sesquioleate (Arlacel 83; HLB 3.7) > POE (10) hydrogenated castor oil (HCO-10; HLB 6.5) > sorbitan monostearate (Arlacel 60; HLB 4.7). VEA solubility was also shown to be different according to the type of antioxidant. In early time, the solubility of the sample including ascorbic acid was similar to those of other samples including other types of antioxidants. However, the solubility of the sample including ascorbic acid was 2 times higher than others after 24 h. Franz diffusion cell experiment using mouse skin was performed with four nano-emulsion samples which have different VEA contents. The emulsion of 10 wt% ethanol was shown to be the most permeable at the amount of 128.8 ${\mu}g/cm^2$. When the result of 10 % ethanol content was compared with initial input of 220.057 ${\mu}g/cm^2$, the permeated amount was 58.53 % and the permeated amount at 10 % ethanol was higher 45.0 % and 15.0 % than the other results which ethanol contents were 1.0 and 20.0 wt%, respectively. Emulsion particle size used 0.5 % surfactant (HCO-60) was 26.0 nm that is one twentieth time smaller than the size of 0.007 % surfactant (HCO-60) at the same ethanol content. Transepidermal permeation of VEA was 54.848 ${\mu}g/cm^2$ which is smaller than that of particlesize 590.7 nm. Skin permeation of nano-emulsion containing VEA and difference of VEA solubility as a function of receptor phase formulation were determined from the results. Using these results, optimal conditions of transepidermal permeation with VEA were considered to be set up.

Fabrication and Characterization of Porous TiO2 Powder by Aerosol Process (에어로졸공정에 의한 다공성 TiO2분말의 제조 및 공극특성)

  • Chang, Han Kwon;Jang, Hee Dong;Park, Jin Ho;Cho, Kuk;Kil, Dae Sup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.479-485
    • /
    • 2008
  • Porous $TiO_2$ nanostructured particles containing both mesopores and macropores were fabricated by utilizing an aerosol templating method from two kinds of starting materials (colloidal mixture of $TiO_2$ nanoparticles and PS particles, and that of TTIP solution and PS particles). The effects of mixing ratio of PS to $TiO_2$ and reactor temperature on the particle properties were investigated. When $TiO_2$ nanoparticles were used as starting materials, the increase of macropores number was observed by SEM and the specific surface area and total pore volume were increased from $31.6m^2/g$ to $39.1m^2/g$ and $0.068cm^3/g$ to $0.089cm^3/g$, respectively, by increasing the weight mixing ratio of $PS/TiO_2$ from 0.79 to 1.31. When TTIP was used as precursor, the specific surface area and mesopore volume of particles prepared at same condition decreased by 67% and 75%, respectively.