• 제목/요약/키워드: Nano-particle solution

검색결과 196건 처리시간 0.027초

나노입자 제거용 Far Field 메가소닉 개발 (Development of a Far Field type Megasonic for Nano Particle Removing)

  • 이양래;김현세;임의수
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1193-1201
    • /
    • 2013
  • Improved far field type(improved type) megasonic applicable to the cleaning equipment of single wafer processing type has been developed. In this study, to improve the uniformity of acoustic pressure distribution(APD), we utilize far field with relatively uniform APD, piezoelectric ceramic with a triangle hole in its center to prevent standing wave resulted from radial mode, and reflected wave from the wall of waveguide. On the basis of these methods, two analysis models of improved type were designed to which piezoelectric ceramic of different shape of electrode attached, and APD were analyzed by means of finite element method, and then one of them was selected by analysis results, finally, the selected model was fabricated. Test results show that the fabricated is better in the uniformity of APD than the imported and the conventional, also the fabricated shows high particle removal efficiency of 92.3% using DI water alone as a cleaning solution.

연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of carbon-supported near-surface alloys (NSAs) for electrode reaction of fuel cell)

  • 박인수;성영은
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.64-69
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of polymer electrolyte membrane fuel cells [PEMFCs] for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the supporting of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an alloying process occurred during the successive reducing process. The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one [Johnson-Matthey] for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

분자동역학을 이용한 열원 주변에서의 나노입자의 분포에 대한 연구 (A Study of Nano-particle Distributions near a Heated Substrate using Molecular Dynamics Simulations)

  • 이태일
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.60-65
    • /
    • 2019
  • Since nanofluids (NFs), which are a mixture of a small amount of nanoparticles and a bulk liquid solvent, were first proposed by Stephen Choi at the Argonne National Lab in 1995, they have been considered for use in many technical studies of power cooling systems and their practical application due to their high thermal conductivity and heat transfer coefficients compared to conventional coolants. Although nanofluids are a well-known form of engineering fluid that show great promise for use in future cooling systems, their underlying physics as demonstrated in experiments remain unclear. One proven method of determining the heat transfer performance of nanofluids is measuring the concentration of nanoparticles in a mixture. However, it is experimentally inefficient to build testbeds to systematically observe particle distributions on a nanoscale. In this paper, we demonstrate the distribution of nanoparticles under a temperature gradient in a solution using molecular dynamics simulations. First, temperature profiles based on substrate temperature are introduced. Following this, the radial pair distribution functions of pairs of nanoparticles, solvents, and substrates are calculated. Finally, the distribution of nanoparticles in different heating regions is determined.

Effect of suction on flow of dusty fluid along exponentially stretching cylinder

  • Iqbal, Waheed;Jalil, Mudassar;Qazaq, Amjad;Khadimallah, Mohamed A.;Naeem, Muhammad N.;Hussain, Muzamal;Mahmoud, S.R.;Ghandourah, E.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.263-270
    • /
    • 2021
  • The present manuscript focuses the effects of suction on the flow of the dusty fluid along permeable exponentially stretching cylinder. Derived PDEs for this work are changed into ODEs by adopting right transformations. Numerical procedure is carried out for the obtained resultant equations by Shooting Technique in accordance with Runge-Kutta (RK-6) technique. Obtained results for the parameters namely, particle interaction parameter, suction parameter and Reynold number parameters are probed thoroughly. Some salient points are: (a) Fluid velocity decreases and the dust phase velocity rises for the higher values of particle interaction parameter; (b) more suction produces retarding velocities for both the phases; (c) high Reynold number slows down the fluid velocity while the speed of dust phase and (d) skin friction coefficient goes high for all these parameters.

합성 조건이 분무열분해 공정에 의해 합성되는 Co3O4 분말의 특성에 미치는 영향 (The Effect of Preparation Conditions on the Characteristics of Co3O4 Particles Prepared by Spray Pyrolysis)

  • 김도엽;주서희;구혜영;홍승권;강윤찬
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.11-18
    • /
    • 2006
  • [ $Co_3O_4$ ] particles with non-aggregation characteristics were prepared by various conditions such as preparation temperature, flow rate of carrier gas, and concentration of spray solution using spray pyrolysis. The morphology and crystallinity of the preformed particles obtained by spray pyrolysis at various conditions affected the mean size and morphology of the post-treated $Co_3O_4$ particles. The preformed particles with hollow and porous morphology obtained from spray solution with citric acid and ethylene glycol turned to $Co_3O_4$ particles with nano size, regular morphology and non-aggregation characteristics after post-treatment at $800^{\circ}C$. On the other hand, the preformed particles obtained by the preparation conditions of short residence time of particles inside hot wall reactor and high reactor temperature turned to $Co_3O_4$ particles with aggregated morphology after post-treatment. The mean crystallite size and particle size of the $Co_3O_4$ particles prepared from optimum preparation conditions were 47 nm and 210 nm at post-treatment temperature of $800^{\circ}C$.

Layered Metal Hydroxides Containing Calcium and Their Structural Analysis

  • Kim, Tae-Hyun;Heo, Il;Paek, Seung-Min;Park, Chung-Berm;Choi, Ae-Jin;Lee, Sung-Han;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1845-1850
    • /
    • 2012
  • Layered metal hydroxides (LMHs) containing calcium were synthesized by coprecipitation in solution having two different trivalent metal ions, iron and aluminum. Two mixed metal solutions ($Ca^{2+}/Al^{3+}$ and $Ca^{2+}/Fe^{3+}$ = 2/1) were added to sodium hydroxide solution and the final pH was adjusted to ~11.5 and ~13 for CaAl-and CaFe-LMHs. Powder X-ray diffraction (XRD) for the two LMH samples showed well developed ($00l$) diffractions indicating 2-dimensional crystal structure of the synthesized LMHs. Rietveld refinement of the X-ray diffraction pattern, the local structure analysis through X-ray absorption spectroscopy, and thermal analysis also confirmed that the synthesized precipitates show typical structure of LMHs. The chemical formulae, $Ca_{2.04}Al_1(OH)_6(NO_3){\cdot}5.25H_2O$ and $Ca_{2.01}Fe_1(OH)_6(NO_3){\cdot}4.75H_2O$ were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Particle morphology and thermal behavior for the synthesized LMHs were examined by field emission scanning electron microscopy and thermogravimetricdifferential scanning calorimetry.

Pectin Micro- and Nano-capsules of Retinyl Palmitate as Cosmeceutical Carriers for Stabilized Skin Transport

  • Ro, Jieun;Kim, Yeongseok;Kim, Hyeongmin;Park, Kyunghee;Lee, Kwon-Eun;Khadka, Prakash;Yun, Gyiae;Park, Juhyun;Chang, Suk Tai;Lee, Jonghwi;Jeong, Ji Hoon;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권1호
    • /
    • pp.59-64
    • /
    • 2015
  • Retinyl palmitate (RP)-loaded pectinate micro- and nano-particles (PMP and PNP) were designed for stabilization of RP that is widely used as an anti-wrinkle agent in anti-aging cosmeceuticals. PMP/PNP were prepared with an ionotropic gelation method, and anti-oxidative activity of the particles was measured with a DPPH assay. The stability of RP in the particles along with pectin gel and ethanolic solution was then evaluated. In vitro release and skin permeation studies were performed using Franz diffusion cells. Distribution of RP in each skin tissue (stratum corneum, epidermis, and dermis) was also determined. PMP and PNP could be prepared with mean particle size diameters of $593{\sim}843{\mu}m$ (PMP) and 530 nm (i.e., $0.53{\mu}m$, PNP). Anti-oxidative activity of PNP was greater than PMP due largely to larger surface area available for PNP. The stability of RP in PMP and PNP was similar but much greater than RP in pectin bulk gels and ethanolic solution. PMP and PNP showed the abilities to constantly release RP and it could be permeated across the model artificial membrane and rat whole skin. RP was serially deposited throughout the skin layers. This study implies RP loaded PMP and PNP are expected to be advantageous for improved anti-wrinkle effects.

SnO2:Cu 나노 구조물의 CH4, CH3CH2CH3 가스 감응 특성 (Gas Sensing Behaviors of SnO2:Cu Nanostructures for CH4, CH3CH2CH3 Gas)

  • 이지영;유윤식;유일
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.974-978
    • /
    • 2012
  • The effect of Cu coating on the sensing properties of nano $SnO_2:Cu$ based sensors for the $CH_4$, $CH_3CH_2CH_3$ gas was studied. This work was focussed on investigating the change of sensitivity of nano $SnO_2:Cu$ based sensors for $CH_4$, $CH_3CH_2CH_3$ gas by Cu coating. Nano sized $SnO_2$ powders were prepared by solution reduction method using stannous chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_2$) and NaOH and subsequent heat treatment. XRD patterns showed that nano $SnO_2$ powders with rutile structure were grown with (110), (101), (211) dominant peak. The particle size of nano $SnO_2:Cu$ powders at 8 wt% Cu was about 50 nm. $SnO_2$ particles were found to contain many pores, according to SEM analysis. The sensitivity of nano $SnO_2:Cu$ based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The sensitivity for both $CH_4$ and $CH_3CH_2CH_3$ gases was improved by Cu coating on the nano $SnO_2$ surface. The response time and recovery time of the $SnO_2:Cu$ gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 18~20 seconds, and 13~15 seconds, respectively.

생체 적합한 나노입자와 계면화학 (Surface Chemistry in Biocompatible Nanocolloidal Particles)

  • 김종득;정재현
    • 대한화장품학회지
    • /
    • 제30권3호
    • /
    • pp.295-305
    • /
    • 2004
  • 콜로이드와 계면화학은 표면적과 표면에너지의 학문이다. 계면상의 위치에 따라서 분자밀도, 분자간의 상호작용력, 분자 배향성 그리고 반응성이 달라진다는 것은 흥미있는 주제가 되고 있다. 이러한 계면에너지가 중요하게 작용하는 시스템으로서 회합체, 에멀젼, 입자분산, 거품, 2차원적 표면이나 필름을 들 수 있다. 특히 나노 입자에 관련된 생체 적합성 재료를 사용하여 약물 전달체와 화장품 나노 소재로 이용하는데 관심이 고조되고 있다. 나노 입자는 수 nm에서 수백 nm 크기를 갖는, 넓은 표면적을 가진 콜로이드 상의 불균일 분산 입자의 일종이다. 지금까지 나노 입자의 제조, 특성 규명, 나노입자를 이용한 약물 봉입에 관한 연구가 활발히 이루어져 약물 전달체로서의 가능성이 충분히 입증되었다. 또한 난용성분 가용화 나노소재, 피부 흡수 증진용 나노소재, 자외선 차단용 나노소재, 안정화용 나노소재, 서방형 나노소재 등의 화장품 연구에 생체적합 나노전달체를 이용한 예가 보고되었다. 나노/마이크로 입자 시스템은 제조방법과 형태에 따라 나노/마이크로 스피어, 나노/마이크로 캡슐, 나노/마이크로 에멀젼, 폴리머 마이셀, 리포좀 등으로 구분된다. 수용액상에서 자기 회합체를 구성하는 나노수준의 폴리머 마이셀입자, 고농도, 고활성 물질에 대하여 농도 및 활성을 일정하게 제어할 수 있는 나노/마이크로 캡슐, 단일 이중층 또는 다층(100~800 nm)을 형성하여 여러 생리 환성 물질의 전달체로 이용되는 리포솜(liposome)에 대하여 제조방법과 산업의 응용에 대해 소개하였다.

열화학적 방법에 의한 전극용 나노 Cu/Al2O3 복합분말 합성 (Synthesis of Cu/Al2O3 Nanostructured Composite Powders for Electrode Application by Thermochemical Process)

  • 이동원;배정현;김병기
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.337-343
    • /
    • 2003
  • Nanostructured Cu-$Al_2O_3$ composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + $Al_2O_3$, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-$Al_2O_3$, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/$Al_2O_3$ composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/$Al_2O_3$ composite by the conventional internal oxidation process.