• Title/Summary/Keyword: Nano-links

Search Result 6, Processing Time 0.016 seconds

Dependence of Gas Sensing Properties of Embossed TiO2 Thin Films on Links Between Hollow Hemispheres (엠보싱 TiO2 박막에서 링크 형상 제어에 따른 가스 감도 변화)

  • Moon, Hi-Gyu;Park, Hyung-Ho;Yoon, Seok-Jin;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.639-645
    • /
    • 2012
  • Embossed $TiO_2$ thin films with high surface areas are achieved using soft-templates composed of monolayer polystyrene beads. The form of links between the beads in the templates is controlled by varying the $O_2$ plasma etching time on the templates, resulting in various templates with close-linked, nano-linked, and isolated beads. Room-temperature deposition of $TiO_2$ on the plasma-treated templates and calcination at $550^{\circ}C$ result in embossed films with tailored links between anatase $TiO_2$ hollow hemispheres. Although all the embossed films have similar surface areas, the sensitivity of films with nano-linked $TiO_2$ hollow hemispheres to 500 ppm CO and ethanol gases are much higher than that of films with close-linked and isolated hollow hemispheres, and the detection limits of them are as low as 0.6 ppm for CO and 0.1 ppm for ethanol. The strong correlation of sensitivity with the form of links between hollow hemispheres reveals the critical role of potential barriers formed at the links. The facile, large-scale, and on-chip fabrication of embossed $TiO_2$ films with nano-linked hollow hemispheres on Si substrate and the high sensitivity without the aid of additives give us a sustainable competitive advantage over various methods for the fabrication of highly sensitive $TiO_2$-based sensors.

Study on the Superprecision Glass Molding of Aspherical Lens for Optical Communication Module (광통신용 비구면 렌즈 초정밀 성형 공정 연구)

  • Jang, Kyung-Su;Lee, Tae-Ho;Rho, Tae-Yung;Kim, Chang-Seok;Jeong, Myung-Yung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • Efforts to obtain more efficient coupling of light from a laser diode to a single mode fiber have continued for various applications such as links for optical fiber communication systems. In TO-can package, configuration of optimized aspherical lens is bi-aspheric and its diameter is 2.4mm. We designed and fabricated aspherical coupling lens by means of glass molding technique under consideration of glass shrinkage. By controlling the aspherical profile error and surface roughness which were below 90nm and 10nm, respectively, we obtained the low coupling loss, 5.40dB, which was able to use for coupling a single mode fiber to laser diode.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part II

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane headgroups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study directly observed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To observe this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various stress conditions and force profiles in pure water were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in pure water, there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. In particular, the protrusion behavior of the monolayer during contact repetition experiment was always observed in the untreated case, but never in the plasma treated case. It directly demonstrates that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part I

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane head-groups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study clearly showed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To examine this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various physical conditions (relative humidity, high stress, and contact repetition) were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in highly humid conditions (>90%RH), there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. It obviously proves that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Effect of Anode Voltage on Diamond-like Carbon Thin Film Using Linear Ion Source (Linear Ion Source를 이용한 Anode Voltage 변화에 따른 DLC 박막특성)

  • Kim, Wang-Ryeol;Jung, Uoo-Chang;Jo, Hyung-Ho;Park, Min-Suk;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.179-185
    • /
    • 2009
  • Diamond-like carbon(DLC) films were deposited by linear ion source(LIS)-physical vapor deposition method changing the anode voltages from 800 V to 1800 V, and characteristics of the films were investigated using residual stress tester, nano-indentation, micro raman spectroscopy, scratch tester and Field Emission Scanning Electron Microscope(FE-SEM). The results showed that the residual stress and hardness increased with increasing the ion energy up to anode voltage of 1400 V. It was also found that the content of $SP^3$ carbon increased with increasing the anode voltage $SP^3/SP^2$ ratio through investigation of $SP^3/SP^2$ ratio by the micro-raman analysis. From these results, it can be concluded that the physical properties of DLC films such as residual stress and hardness are increased with increasing the anode voltage. These results can be explained that 3-dimensional cross-links between carbon atoms and Dangling bond are enhanced and the internal compressive stress also increased with increasing the anode voltage. The optimal anode voltage is considered to be around 1400 V in these experimental conditions.

A Longitudinal Study on Customers' Usable Features and Needs of Activity Trackers as IoT based Devices (사물인터넷 기반 활동량측정기의 고객사용특성 및 욕구에 대한 종단연구)

  • Hong, Suk-Ki;Yoon, Sang-Chul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Since the information of $4^{th}$ Industrial Revolution is introduced in WEF (World Economic Forum) in 2016, IoT, AI, Big Data, 5G, Cloud Computing, 3D/4DPrinting, Robotics, Nano Technology, and Bio Engineering have been rapidly developed as business applications as well as technologies themselves. Among the diverse business applications for IoT, wearable devices are recognized as the leading application devices for final customers. This longitudinal study is compared to the results of the 1st study conducted to identify customer needs of activity trackers, and links the identified users' needs with the well-known marketing frame of marketing mix. For this longitudinal study, a survey was applied to university students in June, 2018, and ANOVA were applied for major variables on usable features. Further, potential customer needs were identified and visualized by Word Cloud Technique. According to the analysis results, different from other high tech IT devices, activity trackers have diverse and unique potential needs. The results of this longitudinal study contribute primarily to understand usable features and their changes according to product maturity. It would provide some valuable implications in dynamic manner to activity tracker designers as well as researchers in this arena.