• 제목/요약/키워드: Nano-level

검색결과 491건 처리시간 0.032초

제어 시스템의 IT 융합을 통한 성능 향상과 나노 정밀도 구현 기술 동향 (Technology Trend on Innovation of Control System by IT-fusion and Implementation of Nano-level Accuracy for Nano Control Systems)

  • 김찬봉;김경돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.240-245
    • /
    • 2005
  • In order to implement nano-level accuracy of precision equipments, a nano control system is one of the key components. The control system consists of a controller, actuators and sensors having nano-level resolution. In this paper, application area and technical trend on the nano control system are introduced. Some required techniques for realizing nano-level resolution of a controller or actuator are presented. Technical innovation of a control system by IT-fusion and its effect are also described. Finally, domestic research activities for development of the IT-based nano control system are introduced.

  • PDF

Abnormal Behavior in Color Tracking in the Fringe-Field Switching (FFS) Liquid Crystal Display

  • Jung, Jun-Ho;Ha, Kyung-Su;Chae, Mi-Na;Cho, In-Young;Kim, Woo-Il;Kim, Dae-Hyun;Kim, Sung-Min;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.616-619
    • /
    • 2009
  • Color tracking behavior of in the fringe-field switching (FFS) mode using a liquid crystal with positive dielectric anisotropy has been studied. In the in-plane switching and vertical alignment devices, color chromaticity at normal direction changes from bluish to yellowish white linearly with increasing grey levels from dark to white state. Interestingly, abnormal behavior in color tracking is observed in FFS devices using a liquid crystal with positive dielectric anisotropy, that is, it changes from bluish to yellowish up to a certain middle grey level but turns over to bluish white with further increasing from a grey level to a fully white state. In this paper, we analyze this abnormal effect from the calculated and experimental results.

  • PDF

Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex

  • Ha, Ho-Kyung;Jeon, Na-Eun;Kim, Jin Wook;Han, Kyoung-Sik;Yun, Sung Seob;Lee, Mee-Ryung;Lee, Won-Jae
    • 한국축산식품학회지
    • /
    • 제36권2호
    • /
    • pp.267-274
    • /
    • 2016
  • The purposes of this study were to investigate the impacts of concentration levels of whey protein isolate (WPI) and inulin on the formation and physicochemical properties of WPI/inulin nano complexes and to evaluate their potential prebiotic effects. WPI/inulin nano complexes were produced using the internal gelation method. Transmission electron microscopy (TEM) and particle size analyzer were used to assess the morphological and physicochemical characterizations of nano complexes, respectively. The encapsulation efficiency of resveratrol in nano complexes was studied using HPLC while the potential prebiotic effects were investigated by measuring the viability of probiotics. In TEM micrographs, the globular forms of nano complexes in the range of 10 and 100 nm were successfully manufactured. An increase in WPI concentration level from 1 to 3% (w/v) resulted in a significant (p<0.05) decrease in the size of nano complexs while inulin concentration level did not affect the size of nano complexes. The polydispersity index of nano complexes was below 0.3 in all cases while the zeta-potential values in the range of -2 and -12 mV were observed. The encapsulation efficiency of resveratrol was significantly (p<0.05) increased as WPI and inulin concentration levels were increased from 1 to 3% (w/v). During incubation at 37℃ for 24 h, WPI/inulin nano complexes exhibited similar viability of probiotics with free inulin and had significantly (p<0.05) higher viability than negative control. In conclusions, WPI and inulin concentration levels were key factors affecting the physicochemical properties of WPI/inulin nano complexes and had potential prebiotic effect.

Strength and durability study on cement mortar containing nano materials

  • Ashok, M.;Parande, A.K.;Jayabalan, P.
    • Advances in nano research
    • /
    • 제5권2호
    • /
    • pp.99-111
    • /
    • 2017
  • Nano particles have been gaining increasing attention and applied in many fields to fabricate new materials with novel functions due to their unique physical and chemical properties. In the present study two nano materials, namely nano silica (NS) and nano clay metakaolin (NMK) were partially replaced with ordinary Portland cement (OPC). The replacement level was varied from 0.5 to 2.0% in OPC and blended in cement mortar with a water cement ratio of 0.40. Mechanical property studies and durability experiments such as compressive strength, tensile strength, water absorption, depth of chloride penetration test. Nano silica was synthesized from rice husk ash and analyze the size using particle size analyzer. The results indicate that the compressive and tensile strength of the cement mortars containing nano materials were higher strength compared to the plain mortar with the same water cement ratio.

나노기포 수소수에서 배양한 Arthrospira platensis 특성 확인 (Characterization of Arthrospira platensis Cultured in Nano-bubble Hydrogen Water)

  • 서지혜;최수정;이상훈;이재화
    • 공업화학
    • /
    • 제26권4호
    • /
    • pp.421-426
    • /
    • 2015
  • 미세조류 Arthrospira platensis는 단백질 함량이 높고, 불포화 지방산 등을 다량함유하고 있어 건강보조식품 및 다양한 분야에서 활용되고 있다. 또한 phycocyanin, myxoxanthophyll, zeaxanthin 등의 색소를 함유하고 있어서 항산화물질, 식품 첨가물로도 이용되고 있다. 나노기포 수소수는 수소 기체를 나노기포 상태로 물속에 주입하여 포화용해도 이상으로 용해시킨 것이다. 이런 나노기포 수소수는 항산화능이 높고, 항암효과가 있는 것으로 알려져 있다. Arthrospira platensis를 일반 증류수 배지와 수소수로 제조한 배지에서 배양한 후 특성을 확인하였다. 배양 결과, 세포 성장 및 광합성으로 인한 색소인 chlorophyll과 carotenoid의 함량은 수소수 배지에서 배양하였을 경우 대조군에 비해 15% 정도 증가한 것으로 나타난다. 그리고 phycocyanin 역시 7% 정도 증가하였다. 하지만, 지질함량은 수소수 배지 배양과 일반 배지 배양 간에 큰 차이가 없는 것을 확인하였다. 항산화물질의 함량을 확인하기 위해 flavonoid 및 polyphenol의 함량을 측정하였다. Flavonoid는 수소수 배지에서 배양하였을 경우 대조군에 비해 70% 이상 증가함을 보이고 있다. 하지만 polyphenol은 대조군과 유사한 함량을 보이고 있다.

Reliability based partial safety factor of concrete containing nano silica and silica fume

  • Nanda, Anil Kumar;Bansal, Prem Pal;Kumar, Maneek
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.385-395
    • /
    • 2020
  • The influence of combination of nano silica and silica fume, as partial cement replacement materials, on the properties of concrete has been studied through the measurement of compressive strength. The compressive strength of concrete in terms of mean, standard deviation and with-in-test coefficient of variation related to the variation in the nominated parameters have also been developed. The compressive strength data developed experimentally has been analyzed using normal-probability distribution and partial safety factors of composite concretes have been evaluated by using first order second moment approach with Hasofer Lind's method. The use of Nano silica and silica fume in concrete decreases the partial safety factor of concrete i.e., increase the reliability of concrete. The experimental results show that the properties of concrete having nano silica and silica fume in combination were better than that of a plain concrete. The SEM test results showing the level of Ca(OH)2 in plain concrete and consumption level Ca(OH)2 of concrete containing nano silica & silica fume have also been presented.

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • Mahyar Motamedi Kouchaksarai ;Yasser Rostamiyan
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.117-126
    • /
    • 2023
  • This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.

나노모터의 기가급 공진 특성에 대한 연구 (A Study on Nano-Motor of Giga-hertz level Resonance Characteristics)

  • 송영진;이준하
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.1-4
    • /
    • 2010
  • We investigated a linear carbon nanotube motor serving as the key building block for nano-scale motion control by using molecular dynamics simulations. This linear nano-motor, is based on the electrostatically telescoping multi-walled carbon-nanotube with ultralow intershell sliding friction, is controlled by the gate potential with the capacitance feedback sensing. The resonant harmonic peaks are induced by the interference between the driving frequencies and its self-frequency. The temperature is very important factor to operate this nanomotor.