• Title/Summary/Keyword: Nano-indentation

Search Result 214, Processing Time 0.027 seconds

Evaluation of Micro-Tensile Properties for Nano-coating Material TiN (나노 코팅재 TiN 의 마이크로 인장 특성 평가)

  • Huh, Yong-Hak;Kim, Dong-Iel;Hahn, Jun-Hee;Kim, Gwang-Seok;Yeon, Soon-Chang;Kim, Yong-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.240-245
    • /
    • 2004
  • Tensile properties of hard coating material, TiN, were evaluated using micro-tensile testing system. TiN has been known as a hard coating material commonly used today. Micro-tensile testing system consisted of a micro tensile loading system and a micro-ESPI(Electronic Speckle Pattern Interferometry) system. Micro-tensile loading system had a maximum load capacity of 500mN and a resolution of 4.5 nm in stroke. TiN thin film $1{\mu}m$ thick was deposited on the Si wafer pre-deposited of $Si_3N_4$ film substrate by the closed field unbalanced magnetron sputtering (CFUBMS) process. Three kinds of micro-tensile specimen with the respective width of $50{\mu}m$, $100{\mu}m$ and $500{\mu}m$ were fabricated by MEMS process. The mechanical properties including tensile strength and elastic modulus were determined using the micro-tensile testing system and compared by those obtained by nano-indentation

  • PDF

A study on Creep of Plate PMMA in Thermal-Nanoindentation Process for Hyperfine pit structure Fabrication (극미세 점 구조체 제작을 위한 열간나노압입 공정에서의 평판형 PMMA의 크립현상에 관한 연구)

  • Lee, E.K.;Jung, Y.N.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.273-276
    • /
    • 2008
  • Thermoplastic resin takes place stress relaxation and creep according to temperature and time. In room temperature, time dependent deformation (TDD) of polymer was carried out at previous study. In this study, it evaluates time dependent deformation to relate temperature. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is important to control pattern depth for change of indent depth by creep when using Nanoindenter. For evaluating TDD at high temperature, it is occurred thermal-nanoindentation test by changing hold time at maximum load. Temperature is putted at $90^{\circ}C$, hold time at maximum loads are putted at 1, 10, 50, 100, 200, 300 and 500s.

  • PDF

A Study on Electrically Assisted Solid State Joining of Aluminum and Copper (알루미늄과 구리 간 통전고상접합 연구)

  • Park, J.W.;Choi, H.;Lee, S.;Jeong, H.J.;Hong, S.T.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • The influence of electric current on the joining properties of aluminum and copper was investigated. Various pulsed electric current conditions were set to the joining specimens followed by pressure. The shear strength of the joint area between aluminum and copper was measured by the lab shear test. In addition, the microstructures of the joint area were observed through a field emission scanning electron microscope, energy dispersive X-ray, and electron backscatter diffraction. The mechanical properties of each phase in the joint region were measured by nano-indentation. As a result, it was confirmed that electrically assisted solid state joining of copper and aluminum could be applied in various industrial fields.

Evaluation of Coated Layers of HTGR Nuclear Fuel Particle

  • Song, M.S.;Choi, Y.;Kim, B.G.;Lee, Y.W.;Lee, J.K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1047-1048
    • /
    • 2004
  • Simulation Coated layers of a nuclear fuel particle were evaluated by field emission scanning electron microscopy and nano-indentation method to give basic data to estimate 'Amoeba effect' and give an optimum fabrication condition and high quality control. Coated layers on the fuel kernel are in the order of buffer pyrolytic carbon, inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon layers, which average thicknesses are 95, 25, 30 and 28 ${\mu}m$, respectively. Their densities and hardnesses are 1.08, 1.15, 3.18, 1.82 $g/cm^3$ and 0.522, 0.874, 9.641, and 2.726 GPa, respectively. Comparing theoretical density of pyrolytic carbon of 2.22 $g/cm^3$, the relative amount of porosity in each layer is about 52% for buffer, 48% for inner PyC and 18% for outer PyC.

  • PDF

A study on the stamp-resist interaction mechanism and atomic distribution in thermal NIL process by molecular dynamics simulation (분자동역학 전산모사를 이용한 나노임프린트 리소그래피 공정에서의 스탬프-레지스트 간의 상호작용 및 원자분포에 관한 연구)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.343-348
    • /
    • 2007
  • Molecular dynamics study of thermal NIL (Nano Imprint Lithography) process is performed to examine stamp-resist interactions. A layered structure consists of Ni stamp, poly-(methylmethacrylate) thin film resist and Si substrate was constructed for isothermal ensemble simulations. Imposing confined periodicity to the layered unit-cell, sequential movement of stamp followed by NVT simulation was implemented in accordance with the real NIL process. Both vdW and electrostatic potentials were considered in all non-bond interactions and resultant interaction energy between stamp and PMMA resist was monitored during stamping and releasing procedures. As a result, the stamp-resist interaction energy shows repulsive and adhesive characteristics in indentation and release respectively and irregular atomic concentration near the patterned layer were observed. Also, the spring back and rearrangement of PMMA molecules were analyzed in releasing process.

  • PDF

Finite Element Analysis of Nano Deformation for the Hyper-Fine Pattern Fabrication by using Nanoindentation (나노인덴테이션을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석(I))

  • 이정우;윤성원;강충길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.210-217
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0mm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

Effects of Annealing Treatments on Microstructure and Mechanical Property of co-sputtered TiNi Thin Film (Co-sputtering에 의해 증착된 TiNi 박막의 미세조직 및 기계적성질에 미치는 어닐링 열처리 효과)

  • Park, S.D.;Baeg, C.H.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • Effects of annealing treatment on microstructure and mechanical property of co-sputtered TiNi thin films were studied. As-deposited films showed amorphous state. However, above annealing temperature of $500^{\circ}C$ martensite phase (B19'), precipitate phase ($Ti_2Ni$) and a small amount of parent phase ($B_2$) were present, and phase transformation behaviors were three multi-step phase transformations $B19^{\prime}{\rightarrow}B_2$ and $B_2{\rightarrow}R-phase$ and $R-phase{\rightarrow}B19^{\prime}$. Increase of martensite transformation temperature, increase of microhardness and Young's modulus of TiNi films annealed above $500^{\circ}C$ were discussed in terms of precipitate phase.

The comparison between experimental and FEA results for crack initiation due to corrosion of reinforcement (콘크리트 구조물의 철근부식으로 인한 균열발생에 관한 실험적, 해석적 결과의 비교)

  • 장상엽;김용철;조용범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.693-698
    • /
    • 2003
  • Corrosion of reinforcement and deterioration of concrete short the lifetime of reinforced concrete structure and affect the safety of the structure. In particular, the corrosion of reinforcement causing the inner pressure of the interface between the concrete and reinforcement is known to significantly contribute to the premature deterioration of concrete structure. Several attempts have been made to predict the cracking time of the concrete structure. However, problems such as the lack of reproducibility of concrete tests and non-uniformity of materials have hampered thess kinds of studies. Thus, the mechanism of the concrete cracking due to reinforcement corrosion is in the way. This studymeasured the mechanical properties of corrosion products using the nano-indentation test method. Likewise, the critical thickness of corrosion products for the cracking of concrete cover was investigated using the finite element and experimental methods.

  • PDF

Evaluation of Surface Mechanical Properties of Electro-formed Fe-Ni-Co Thin Foil by Dynamic Nano-indentation and Finite Element Methods (Fe-Ni-Co 박판의 동적 나노 압침법과 유한 요소법에 의한 표면 기계적 특성 평가)

  • Gang, Bo-Gyeong;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.124-124
    • /
    • 2017
  • Fe-Ni-Co 합금 박막(<$100{\mu}m$)을 황화물계 용액에서 전주공정으로 제조하였다. XRF로 측정한 박판의 평균 조성은 Fe-34 wt.% Ni-3 wt.% Co 이다. AFM으로 측정한 표면 조도는 35.2 nm 이다. 표면의 나노 경도는 평균 5.4 GPa 이었다. Oliver 모델을 적용한 구리 박막의 탄성하강강성도는 약 75 이었다. Alekhin 모델을 적용한 구리 박막의 마찰계수, 피로한계는 각각 0.134, 0.027 이었다. 유한요소법으로 평가한 Berkovich 형 나노압침선단의 하중분포를 이차원 선형 및 비선형 해석하면 1 [mN]의 정적하중을 가한 Fe-Ni-Co 박막은 약 576 [mN]로 예측되었다. 압침선단의 하중집중정도는 표면탐침현미경으로 관찰한 압흔의 변형정도와 유사한 경향을 보였다.

  • PDF

Fundamental Study on Deformation Behavior of the Nano Structure for Application to the Hyper-fine Pattern and Mold Fabrication (극미세 Mold 및 패턴 제작물 위한 나노변형의 기초연구)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.333-336
    • /
    • 2002
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numberical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and bur was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

  • PDF