• 제목/요약/키워드: Nano-diamond

검색결과 172건 처리시간 0.03초

단결정 실리콘의 초정밀가공 (Nano-turning of single crystal silicon)

  • 김건희;도철진;홍권희;유병주;원종호;박상진;안병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.939-942
    • /
    • 2000
  • Single point diamond turning technique for optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material.

  • PDF

미세패턴 평판 금형가공 기술동향 (Trends of Flat Mold Machining Technology with Micro Pattern)

  • 제태진;최두선;전은채;박언석;최환진
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.1-6
    • /
    • 2012
  • Recent ultra-precision machining systems have nano-scale resolution, and can machine various shapes of complex structures using five-axis driven modules. These systems are also multi-functional, which can perform various processes such as planing, milling, turning et al. in one system. Micro machining technology using these systems is being developed for machining fine patterns, hybrid patterns and high aspect-ratio patterns on large-area molds with high productivity. These technology is and will be applied continuously to the fields of optics, display, energy, bio, communications and et al. Domestic and foreign trends of micro machining technologies for flat molds were investigated in this study. Especially, we focused on the types and the characteristics of ultra-precision machining systems and application fields of micro patterns machined by the machining system.

Improvement of Adhesion Strength of DLC Films on Nitrided Layer Prepared by Linear Ion Source

  • Shin, Chang-Seouk;Kim, Wang-Ryeol;Park, Min-Seok;Jung, Uoo-Chang;Chung, Won-Sub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.177-179
    • /
    • 2011
  • The purpose of this study is to enhance an adhesion between substrate and Diamond-like Carbon (DLC) film. DLC has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion because of weak bonding between DLC film and the substrate. For improvement adhesion, a layer between DLC film and the substrate was prepared by dual post plasma. DLC film was deposited on nitrided layer by linear ion source. The composed compound layer between substrate and DLC film was investigated by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The synthesized bonding structure of DLC film was analyzed using a micro raman spectrometer. Mechanical properties were measured by nano-indentation. In order to clarify the mechanism for improvement in adhesive strength, it was observed by scratch test.

  • PDF

나노유체를 냉각유체로 사용하는 마이크로채널 히트 싱크의 냉각효율 (Cooling Performance of a Microchannel Heat Sink with Nanofluids)

  • 장석필
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.849-854
    • /
    • 2005
  • In this paper, the cooling performance of a microchannel heat sink with nano-particle-fluid suspensions ('nanofluids') is numerically investigated. By using theoretical models of thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion respectively, we investigate the temperature contours and thermal resistance of a microchannel heat sink with nanofluids such as 6nm copper-in-water and 2nm diamond-in-water. The results show that a microchannel heat sink with nanofluids has high cooling performance compared with the cooling performance of that with water, the classical coolant. Nanofluids reduce both the thermal resistance and the temperature difference between the heated microchannel wall and the coolant.

초정밀 연삭기에 의한 사파이어의 나노가공 (A Study on the Nano Grinding of Sapphire by Ultra-Precision Grinder)

  • 김우순;김동현;난바의치
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.40-45
    • /
    • 2003
  • Optical and electronic industries are using lapping and polishing processing as a final finish rather than grinding, because they need more accurate parts of brittles non-metallic materials such as single crystals. Sapphire has been ground by the ultra-precision surface grinder having a glass -ceramic spindle of extremely-low thermal expansion with various cup-type resinoid-bonded diamond wheels of #400-#3000 in grain size. Sapphire can be ground in the ductile mode. And also, the surface roughness and grinding conditions has been clarified. The smooth surface of Sapphire less than 1nm RMS, 1nm Ra can be obtained by the ultra-precision grinding without any polishing process.

중간층이 DLC 코팅에 미치는 영향 (The Effects of Interlayer on the DLC Coating)

  • 송진수;남태운
    • Corrosion Science and Technology
    • /
    • 제10권2호
    • /
    • pp.65-70
    • /
    • 2011
  • DLC is considered as the candidate material for application of moving parts in automotive components relatively in high pressure and temperature operating conditions for its high hardness with self lubrication and chemical inertness. The properties of interlayer between the substrate and the DLC film were studied. Arc ion plating method have been employed to deposit onto substrate and sputtering method was used for synthesizing DLC onto interlayer. Among these six types of interlayer, deposited DLC film onto TiCN showed excellent value for characteristics. From the results of analysis for physical properties of DLC films, it seems that the adhesion forces were more important factors than intrinsic mechanical properties such as hardness, roughness and wear resistance of DLC films. AFM(Atomic Force Microscope) was used for understanding roughness of DLC films. Hardnesses of the coating layers were identified by nano-indentation method and adhesions were checked by scratch method.

나노 다이아몬드 분말이 크롬 복합 도금층의 표면 물성에 미치는 영향 연구 (Investigation on the Effect of the Nano-diamond Powder on the Surface Properties of Chromium Composite Layers)

  • 이주열;;김만;권식철
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.85-86
    • /
    • 2007
  • 상용으로 사용되고 있는 Sargent bath에 수십 나노크기의 다이아몬드 분말을 혼입하여 전기도금법에 의해 매우 우수한 표면 특성을 갖는 크롬 복합 도금층을 얻었다. 상기 복합 도금층은 순수 크롬 도금층의 미세 경도(Hy. 801)보다 높은 값(Hy. 920)을 나타내었고, 내마모성은 약 3-4배 뛰어난 성능을 보였다. 또한, NaCl 수용액에서 수행한 내식성 테스트에서는 크롬 복합 도금층이 순수 크롬 도금층대비 1/6 수준의 passive current를 가졌다. SEM을 통한 표면 형상 관찰 결과 크롬 도금층에 혼입된 나노 다이아몬드 분말은 단결정 혹은 다결정의 형태로 존재하였다.

  • PDF

나노미터 표면가공시 절삭조건에 관한 연구 (A Study on the Cutting Conditions in Machining for Nanometer Surface)

  • 문재일;김부태;김영일;허성중
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.152-157
    • /
    • 1998
  • Since early 1960s, the high precision machining technology, so called ultra-precision technology or nano technology, has been developed in many Held based on single point diamond turning technology. The major application of this technology is the optical components with aspherical surfaces. Now a days, customer requires the smaller and lighter optical elements, such as camera video and etc., with higher performance for convenience. So, the manufacturer focuses on the ultra-precision technology. Thus, this technology becomes the major target to challenge the advanced barrier for the next machining technology.

  • PDF

Design Parameter Optimization for Hall Sensor Application

  • Park, Chang-Sung;Cha, Gi-Ho;Kang, Hyun-Soon;Song, Chang-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.86.3-86
    • /
    • 2001
  • Hall effect sensor using 7um, 1.7 ohm-cm or 10um, 3.5 ohm-cm Bipolar process was successfully developed. The Hall sensor consists of various patterns, such as regular shapes, rectangles, diamond, hexagon and cross shapes to optimize offset voltage and sensitivity for proper applications. In order to measure offset voltage in chip scale the Agilent company´s 4156C and Nano-Voltage Meter were used and the best structure in offset voltage was finally selected by using ceramic package. The patterns appear to be the quadri-rectangular patterns entirely and three-parallelogram patterns. The measured offset voltages were found to be about 173-365uV. Meanwhile, in ...

  • PDF

Improved Adhesion of DLC Films by using a Nitriding Layer on AISI H13 Substrate

  • Park, Min-Seok;Kim, Dae-Young;Shin, Chang-Seouk;Kim, Wang Ryeol
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.307-314
    • /
    • 2021
  • Diamond-like carbon (DLC) is difficult to achieve sufficient adhesion because of weak bonding between DLC film and the substrate. The purpose of this study is to improve the adhesion between substrate and DLC film. DLC film was deposited on AISI H13 using linear ion source. To improve adhesion, the substrate was treated by dual post plasma nitriding. In order to define the mechanism of the improvement in adhesive strength, the gradient layer between substrate and DLC film was analyzed by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The microstructure of the DLC film was analyzed using a micro Raman spectrometer. Mechanical properties were measured by nano-indentation, micro vickers hardness tester and tribology tester. The characteristic of adhesion was observed by scratch test. The adhesion of the DLC film was enhanced by active screen plasma nitriding layer.